The ARPA Network
Design Decisions*

John M. McQuillan and David C. Walden

Bolt Beranek and Newman Inc., 50 Moulton Street,
Cambridge, Massachusetts 02138, USA

A number of key decisions made in the design of the
ARPA Network over a five-year period serve as the context
for an analysis of the fundamental properties and require-
ments of packet-switching networks and formulation of the
fundamental criteria for evaluating network performance.
The decisions described fall into. the threee major areas of

~ network equipment design, store-and-forward subnetwork
system design, and source-to-destination system design, and
each decision is examined in detail.

Key words: Packet-switching, protocols, networks, com-
puter communication, interprocess com-
munication, internetting, ARPANET.

John McQuillan received his B.A.,
M.A., and Ph.D. degrees in Applied
Mathematics from Harvard Univer-
sity. He has worked in the Computer
Systems Division of Bolt Beranek and
Newman Inc. since 1971. At the time
this paper was written, Dr. McQuillan
had responsibility for development
and maintenance of the ARPA Net-
work “IMP” software. Over the past
several years he has been active in
studying advanced computer com-
munications systems and network architectures. He is pres-
ently Manager of Bolt Beranek and Newman’s Systems
Analysis Department, which specializes in such studies.

David Walden graduated from San
Francisco State College. Since then
he has worked in the Space Commu-
nications Division of M.I.T.’s Lincoin
Laboratory, for A/S Norsk Data-
Elektronikk in Oslo, Norway, and in
the Computer Systems Division of
Bolt Beranek and Newman Inc. Mr.
Walden is one of the original team
which designed and implemented the
ARPA Network “IMP”. He is cur-
rently Assistant Division Director of
Bolt Beranek and Newman’s Computer Systems Division,
where his specialty is computer communications systems.

. © North-Holland Publishing Company
Computer Networks 1 (1977) 243-289

Preface

This paper was prepared at the time (July 1975)
that the Advanced Research Projects Agency (ARPA)
Network was turned over by ARPA to the Defense
Communications Agency and the network changed
from an experimental system to an operational one.
The network design decisions that form the context
of the paper are therefore the decisions that had been
made up to the time of transition. Of course the net-
work has continued to evolve, since July 1975,

beyond the state described here.

1. Introduction

The goals of this paper -are to identify several of
the key design choices that must be made in specify-
ing a packetswitching network and to provide some
insight in each area. Through our involvement in the
design, evolution, and operation of the ARPA Net-
work over the last five years (and our consulting in
the design of several other networks), we have learned
to appreciate both the opportunities and the hazards
of this new technical domain.

The last year or so has seen a sudden increase in
the number of packet-switching networks under con-
sideration worldwide. It is natural that these net-
works try to improve on the example of the. ARPA
Network, and therefore that they contain many fea-
tures different from those of the ARPA Network. We
recognize that networks must be designed differently
to meet different requirements; nevertheless, we
think that it is easy to overlook important aspects of
performance, reliability, or cost. It is vital that these
issues be adequately understood in the development
of very large practical networks—common user sys-
tems. for hundreds or thousands of Hosts—since the
penalties for error are correspondingly great.

Some brief definitions are needed to isolate the
kind of computer network under consideration here:

Nodes. The nodes of the network are real-time
computers, with limited storage and processing
resources, which perform the basic packet-switching
functions.

Hosts. The Hosts of the network are the com-
puters, connected to nodes, which are the providers
and users of the network services.

* The work described here was supported under Contracts
DAHC15-69-C-0179, F08606-73-C-0027, and F08606-75-
C-0032.

244

Lines. The lines of the network are some type of
communications circuit of relatively high bandwidth
and reasonably low error rate.

Connectivity. We assume a general, distributed
topology in which each node can have multiple paths
to other nodes, but not necessarily to all other nodes.
Simple networks such as stars or rings are degenerate
cases of the general topology we consider.

Message. The unit of data exchanged between
source and destination Host.

Packet. The unit of data exchanged between
adjacent nodes.

Acknowledgment. A piece of control information
returned to a source to indicate successful receipt of a
packet or message. A packet acknowledgment may be
returned from an adjacent node to indicate successful
receipt of a packet; a message acknowledgment may
be returned from the destination to the source to
indicate successful receipt of a message.

Store and forward subnetwork. The node stores a
copy of a packet when it receives one, forwards it to
an adjacent node, and discards its copy only on
receipt of an acknowledgment from the adjacent
node, a total storage interval of much less than a
second.

Packet switching. The nodes forward packets from
many sources to many destinations along the same
line, multiplexing the use of the line at a high rate.

Routing algorithm. The procedure which the
nodes use to determine which of the several possible
paths though the network will be taken by a packet.

Node—node transmission procedures. The set of
procedures governing the flow of packets between
adjacent nodes.

Source—destination transmission procedures. The
set .of procedures governing the flow of messages
between source node and destination node.

Host—node transmission procedures. The set of
procedures governing the flow of information
between a Host and the node to which that Host is
directly connected.

Host—host transmission procedures. The set of
procedures governing the flow of information
between the source Host and the destination Host.

Within the class of network under consideration,
there are already several operational networks and
many network designs. The ARPA Network [17] is
made up of overfifty node computers called Inter-
face Message Processors or IMPs and over seventy
Hosts. The Cyclades Network [33] is a French net-
work consisting of about six nodes and about two

J.M. McQuillan, D.C. Walden

Hosts per node. The Societe Internationale de Tele-
communication Aeronautique (SITA) Network [7]
connects centers in eight or so cities mostly in Europe.
The European Informatics Network (EIN) [3], also
known as Cost-11, is currently in a design stage and
will be a network interconnecting about six com-
puters in several Common Market countries. Some
other packet-switching network designs include:
Audodin II [35], NPL [11], PCI [1], RCP [13], and
Telenet [1].

Some of the more obvious differences among these
networks can be cited briefly. The ARPA Network
splits messages into packets up to 1000 bits long;
some of the other networks have 2000-bit packets
and no multipacket messages. Hosts connect to a
single node in the ARPA Network and SITA; multiple -

_connections are possible in Cyclades and EIN. Dy-

namic routing is used in the ARPA Network and EIN;
a different adaptive method is used in SITA; fixed
routing is presently used in Cyclades. The ARPA Net-
work delivers messages to the destination Host in the
same sequence ‘as it accepts them from the source
Host; Cyclades does not; in EIN the sequence is op-
tional. Clearly, many of the design choices made in
these networks are in conflict with each other, The
resoluton of these conflicts is essential to the plan-
ning and building of balanced, high performance net-
works, particularly since many future designs will be
intended for networks which are larger, less experi-
mental, and more complex.

As the ARPA Network is discussed at length
throughout the remainder of this paper, we next sum-
marize how the IMP in the ARPA Network performs
its functions as a message switching center and inter-
face between Host computers. Fig. 1 shows a diagram
of message flow in the ARPA Network and illustrates
some of the terminology. The Host sends the IMP a
message with up to 8063 data bits. The source IMP
breaks this up into packets with up to 1008 data bits.
When the packet is successfully received at each IMP,
an acknowledgment or ack is sent back to the previ-
ous IMP. When the message arrives at the destination
IMP it is reassembled, that is, the packets are com-
bined into a message again. The message is sent to the
destination' Host and when it has been accepted, a
Ready For Next Message which we abbreviate as
RFNM is sent back to the source Host, The RENM is
also a packet and it is acknowledged. Several points
are worth noting. First, acks are not actually separate
transmissions, but are piggy-backed in packets to cut
down on overhead. Next, packets on the links

s

The ARPA network design decisions

Packets Packets

Host Host

Fig. 1. Message flow in the ARPANET.

between IMPs are checksummed in the modem inter-
face hardware and the IMP employs a positive ack-
nowledgment retransmission scheme: that is, if a
packet is in error, it is not acknowledged. It is then
retransmitted until an acknowledge is received. Fur-
ther, an IMP may send the several packets of a mes-
sage out on different links. Because of retransmission
(out of order) of a packet on a link and transmission
of packets on alternate links, the packets of a message
may arrive at the destination IMP out of order and
must be reassembled into the correct order for trans-
mission into the Host.

2. Fundamental issues

In this section we define what we believe are
‘fundamental properties and requirements of packet-
switching networks and what we believe are the fun-
damental criteria for measuring network perfor-
mance.

2.1. Network properties and requirements

We begin by giving the properties central to
packet-switching network design. The key assumption
here is that the packet processing algorithms (routing,
acknowledgment/retransmission strategies used to
control transmission over noisy circuits, etc.) result in
a virtual network path between the Hosts with the
following characteristics:

a. Finite, fluctuating delay—A result of the basic
line bandwitdth, speed of light delays, queueing in
the nodes, line errors, etc.

b. Finite, fluctuating bandwidth—A result of net-
work overhead, line errors, use of the network by
many sources, etc. '

c. Finite packet error rate (duplicate or lost
packets)—A result of the acknowledgment system in
any store-and-forward discipline (this is a different

245

use of the term “‘error rate” than in traditional tele-
phony).

Duplicate packets are caused when a node goes
down after receiving a packet and forwarding it with-
out having sent the acknowledgment. The previous
node then generates a duplicate with its retransmis-
sion of the packet. Packets are lost when a node goes
down after receiving a packet and acknowledging it
before the successful transmission of the packet to
the next node. An attempt to prevent lost and dupli-
cate packets must fail as there is a tradeoff between
minimizing duplicate packets and minimizing lost
packets. If the nodes avoid duplication of packets
whenever possible, more packets are lost. Conversely,
if the nodes retransmit whenever packets may be lost,
more packets are duplicated.

d. Disordering of packets—A property of the ack-
nowledgment and routing algorithms.

These four properties describe what we term the
store-and-forward subnetwork.

There are also two basic problems to be solved by
the source and destination in the virtual path
described above:

e. Finite storage—A property of the nodes.

f. Differing source and destination bandwidths—
Largely a property of the Hosts.

(Note: the question is frequently raised whether
the source and destination nodes or the source and
destination Hosts should solve these problems. This
question is addressed in a later section.)

A slightly different treatment of this subject can
be found in [34].

The fundamental requirements for packet-switch-
ing networks are dictated by the six properties enu-
merated above. These requirements include:

a. Buffering—Buffering is required because it is
generally necessary to send multiple data units on a
communications path before receiving an acknow-
ledgment. Because of the finite delay of the network,
it may be desirable to have buffering for multiple
packets in flight between source and destination in
order to increase throughput. That is, a system with-
out adequate buffering may have unacceptably low
throughput due to long delays waiting for acknow-
ledgment between transmissions. Buffering is also
required when input traffic momentarily exceeds out-
put capacity.

b. Pipelining—The finite bandwidth of the network
may necessitate the pipelining of each message flow-
ing through the network by breaking it up into
packets in order to decrease delay. The bandwidth of

246

the circuits may be low enough so that forwarding
the entire message at each node in the path results in
excessive delay. By breaking the message into
packets, the nodes are able to forward the first packet
of the message through the network ahead of the
later ones. For a message of P packets and a path of H
hops (with small propagation delays), the minimum
delay is proportional to P+ H — 1 instead of PxH,
where the proportionality constant is the packet
length divided by the transmission rate. (See section
2.2.1 below for a derivation and more exact results.)

c. Error control—The node-to-node packet proces-
sing algorithm must exercise error control, with.an
acknowledgment system in order to deal with the
finite packet error rate of the circuits. It must also
detect when a circuit becomes unusable, and when to
begin to use it again. In the source-to-destination mes-
sage processing algorithm, the destination may need
to exercise some controls to detect missing and du-
plicated messages or portions of messages, which
would appear as incorrect data to the end user. Fur-
ther, acknowledgments of message delivery or non-
delivery may be useful, possibly to trigger retransmis-
sion. This mechanism in turn requires error control
and retransmission -itself, since the delivery reports
can be lost or duplicated. The usual technique is to
assign some unique number to identify each data unit
and to time out unanswered units. The error correc-
tion mechanism is invoked infrequently, as it is
needed only to recover from node or line failures.

d. Sequencing—Since packet sequences can be
received out of order, the destination must use a
sequence number technique-of some form to deliver
messages in correct order, and packets in order within
messages, despite any scrambling effect that may take
place while several messages are in transit. The
sequencing mechanism is frequently invoked since it
is needed to recover from line errors.

e. Storage allocation—The fact that storage in the
nodes is finite means that both the packet processing
and the message processing algorithms must exercise
control over its use. The storage may be allocated at
either the sender or the receiver.

f. Flow control-The different source and destina-
tion data rates may necessitate implicit or explicit
flow control rules to prevent the network from
becoming congested when the destination is slower
than the source. These rules can be tied to the
sequencing mechanism, with no more. messages
(packets) accepted after a certain number, or tied to
the storage allocation technique, with no more mes-

J.M. McQuillan, D.C. Walden

sages (packets) accepted until a certain amount of
storage is free, or the rules can be independent of
these features. In satisfying the above six require-
ments, the algorithm often exercises contention reso-
lution rules to allocate resources among several users.
The twin problems of any such facility are:

fairness—resources should be used by all users
fairly (perhaps in accordance with appropriate prior-
ity rules);

deadlock prevention—resources must be allocated
so as to avoid deadlocks.

Notice that each of these algorithms ‘is imple-
mented by a distributed computation. IMP-to-IMP
transmission control involves cooperation between
every pair of neighboring IMPs. Source-to-destination
transmission control is a distributed process between
the pair of IMPs exchanging a message. Finally, flow
control and routing are distributed algorithms which
involve all the IMPs in the network, Each IMP makes
local decisions about global functions. The process of
routing messages from source to destination involves
all the IMPs in the network, in order that the best
path for the message be chosen and agreed upon.
Such distributed computations are quite different
from conventional algorithms. They are not initial-
ized, nor do they run to completion and halt. In a
real sense, the ARPA routing calculation, flow con-
trol techniques, and so on, have been in progress for 5
years now, since some part of the Network has always
been running for all of that time. These algorithms
are continuously active processes on a large number
of different processors. In fact, the number of proces-
sors and the interconnection between them is subject
to change at any moment. They must run completely
without human intervention. They perform conten-
tion resolution among bidders for shared resources,
and they must do so without races or deadlocks. (We
have also come to believe that it is essential to have a
reset mechanism to unlock “impossible” deadlocks
and other conditions that may result from hardware
or software failures.)

2.2. Network performance goals

Packetswitching communications systems have
two fundamental goals in the processing of data—low
delay and high throughput. Each message should be
handled with a minimum of waiting time, and the
total flow of data should be as large as possible. The
difference between low delay and high throughput is
important. What the network user wants is the com-

The ARPA network design decisions

pletion of his data transmission in the shortest possi-
ble time. The time between transmission of the first
bit and delivery of the first bit is a function of net-
work delay, while the time between delivery of the
first bit and delivery of the last bit is a function of
network throughput. For interactive users with short
messages, low delay is more important.

There is a fundamental tradeoff between low delay
and high throughput, as is readily apparent in con-
sidering some of the mechanisms used to accomplish
each goal. For low delay, a small packet size is neces-
sary to cut transmission time, to improve the pipelin-
ing characteristics, and to shorten queueing latency at
each node; furthermore, short queues are desirable.
For high throughput, a large packet size is necessary
to decrease the circuit overhead in bits per second
and the processing overhead per bit. That is, long
packets increase the effective circuit bandwith and
nodal processing bandwidth. Also, long queues may
be necessary to provide sufficient buffering for full
circuit utilization. Therefore, the network may need
to employ separate mechanisms if it is to provide low
delay for some users and high throughput for others.

To these two goals one must add two other
equally important goals, which apply to message pro-
cessing and to the operation of the network as a
whole. First, the network should be cost-effective.
Individual message service should have a reasonable
cost as measured in terms of utilization of network
resources; further, the network facilities, primarily
the node computers and the circuits, should be uti-
" lized in a cost-effective way. Secondly, the network
should be reliable. Messages accepted by the network
should be delivered to the destination with a high
probability of success. And the network as a whole
should be a robust computer communications service,
fault-tolerant, and able to function in the face of
node or circuit failures.

In summary, we believe that delay, throughput,
reliability, and cost are the four criteria upon which
packet-switching network designs should be evaluated
and compared. Further, it is the combined perfor-
mance in all four areas which counts. For instance,
poor delay and throughput characteristics may be too
big a price to pay for “perfect” reliability. We next
examine each of these issues in more detail.

2.2.1. Delay

In this section we consider what delay perfor-
mance characteristics are possible in a given network.
The topics discussed below include: the identification

247

of the components of delay, an analysis of the mini-
mum delay possible for a round trip through a net-
work, the reason for breaking messages up into
packets, a brief look at queueing delay, and a discus-
sion of delays for interactive traffic. Some of this
material was presented in [24], and some of the best
other references to this subject matter are [20,22,
28].

Components of delay. We will first discuss the
delay experienced by a single packet transmitted over
a single hop. The components of delay which we will
take to be fundamental variables are as follows:

1. L = propagation delay or speed of light latency.
This is the delay for the first bit of the packet to
traverse the circuit. L = (circuit length [mile])/(signal
propagation rate [mile/sec]).

2. T = transmission delay. This is the time for the
bits of a packet to be clocked out on the circuit. T =
(number of bits in packet [bits])/(transmission rate
[bits/sec]).

In the analysis below we will use T}, to denote T
for a packet and T} to denote T for a RFNM, which
we will assume is a minimum length packet.

3. C=nodal processing delay. This is the time it
takes the node to process the packet. It has two fixed
components, corresponding to the store” operation
and the forward operation, or receive and transmit,
plus a random component due to queued tasks of
higher priority. This component measures the inter-
ference experienced by packets queued for processor
service. (In the following, we ignore delays at the
source and destination nodes due to message proces-

sing.)
C=C; [sec] + C; [sec] + Cq [sec].

receive transmit queueing — random

A typical range of Cis probably 1 to 10 milliseconds
for an IMP-like node.

4. Dy = queueing delay. This is the time that the
packet must wait for the transmission of the packets
which precede it on the output queue, including the
output time of the packet currently being trans-
mitted. Thus, Cy; measures input queueing delay,
waiting for central processor service, while Dy mea-
sures output queueing delay, waiting for circuit ser-
vice.

5. D, = delays due to retransmissions. This is the
time that the packet must wait in the event that its

* first transmission is unsuccessful. This may happen if

it was in error or if the other node refused it for some

248

Table 1

Some representative propagation delays

Distance L Line type
(miles) (msec)
10 0.054 intra-city line
100 0.54 inter-city line
1000 5.4 long line
3000 16.2 cross-country line
10000 54 very long terrestrial circuit
45000 272 satellite link

reason, or, in the case of broadcast circuits, there was
a collision with another packet.

In general, we will assume- that the first two com-
ponents are much greater than the last three. Tables 1
and 2 give some representative values for L and T.
(Note that a 50 Kbs circuit can transmit 1000 bits in
20 ms and that the first bit can travel about 4000
miles in that time. So a bit is about 4 miles long at 50
Kbs!)

Minimum round trip delay. Now we can examine
the minimum round trip delay, by taking the case of
Cq= Dy =D, =0. Consider a message with P packets
traveling over a path of H hops. If the delay at hop i
is

D) = L(Q) + TG) + CG),
we can define the natural quantity D{ave), average
hop delay, as follows:

H

D(ave) = (1/H)« 25 [LG) + T(G) + CG))].)

i=1

Table 2

Some representative transmission delays

Short packet Long packet
Tp=T; Tp
152 bits 1160 bits
Circuit (msec) (msec)
bandwidth
(kB)
9.6 15.7 120.5
50 3.04 - 23.2
230.4 0.66 5.03
1344 0.106 0.81

J.M. McQuillan, D.C. Walden

We can also define the less obvious variable D(max):

H
D(max) = 25 [TG) + C()]. @
=1

With these definitions, we can make the following
two statements:

1. The first packet experiences delay equal to
H=D(ave).

2. The remaining P — 1 packets follow through the
network, each packet at most one hop behind the
preceding packet; this adds (P — 1)#D(max) to the
total delay. K

This analysis can be illustrated by the numerical
example of table 3. Note that the bottleneck hop, in
this case hop 2, has the largest 7(i) + Cy(i), here equal
to 3.5, but not the highest total delay. That is, hop 3
has total delay of 6, compared to the delay of 5 over
hop 2. Note also that more than one packet is being
transmitted at the same time, giving a pipelined
effect, and reducing the total delay for the message.

This means that the delay for a single packet mes-
sage is

. ,
D(SP) = 22 [L(i) + T,@) + CQ)]. 3)
- =1

and the delay for a multipacket message is
D(MP) = (P — 1)sMax[i = 1, H] [T() + C@)]

+ D(SP). 4
The delay for a RFNM is

H
D(RFNM) = Zf [LG) + T.G) + CG)]. (5)

Therefore, the minimum round trip delay for a mes-

Table 3

P=3

H=3

Ct = Cl' =0.5
HOP 1 2 3
L 0 1 3
T 2 3 2

Total delay = 21, as shown in fig. 2a.

The ARPA network design decisions

hop 1 hop 2 hop 3
Packet 1
Packet 2
Packet 3
{ J
25 30
hop 1 hop 2 hop 3

b: Delay for same message, not split into packets

B o IR
ﬂHI]Cv L

~Fig. 2. An example of delays for a 3-packet message.
sage of P packets over H hops is
H
D(MRT) = 27 [2+L(0) + 2+CG) + Ty (i) + To(0)]
i=1

+(P - 1)=Max[i = 1, H] [T,(0) + C,(®)]. ©)

If the values of L, C, C;, and T are the same for

249

each hop, then we have a simplified minimum round
trip delay
DMRTS) = H«(L + Ty + C) + (P — 1)(Tp, + Cy)

first packet

+H+(L + T, +). (7)
RFNM

subsequent packets

Some curves are given in fig. 3 which illustrate the
minimum round trip delay through a network for a
range of message lengths and path lengths, for two
sets of line speeds and lengths over paths of 1 to 6
hops. These graphs are from [24].

The rationale for packetizing messages. As a slight
digression, we now consider the rationale for breaking
up messages into packets in order to reduce delay. It
will be shown that this rationale is similar to that for
any pipelining technique, and the variables of interest
will be identified. We will carry through this discus-
sion for the simplified case of identical values of L, C,
C;, and T at each hop. First we rewrite eq. (7) as

D(MRTS) = (P — 1)x(Tp, + Cy)
+H*[2*(L+C)+Tp+Tr]~ ' (8)
Note that the only one of the variables L, C, C;, and

250 250
— T T T T
////// c. 230.4 Kb
200[~ - //// 200f~ 100 Miles -
150 |- ///// — 150} -
100 |~ /// u 1001~ J—
50 - B e e
» // a. 50 Kb /—;}’//—'—':-’::‘;/
2 100 Miles —
6 ot 1o b o R T T B
9 o 1 2 3 4 5 6 7 8 o 1 2 3 4 s & 7 8
2 250
3 250 I I B
- // /
= d. 230.4 Kb
Z 200 ////// - 200~ 1000 Miles e
150 // - 150 - //:://
100 — 100} ;//’//_//
S
sol/ — 50 4:"’// —
, b. 50 Kb ! -
L , 1000 Miles —
o T ES B N N S| o N R A S S S
o + 2 3 4 5 6 7 8 o 1 2 3 4 5 6 7 8

MESSAGE LENGTH (PACKETS)

Fig. 3. Minimum round trip delay vs. message length.

250

T which is a function of packet length is 7. Let us
suppose that instead of a message of P packets, each
of which has a transmission delay of T, the message is
sent as a whole, with a transmission delay of PxT.
The total delay can be calculated as above, consider-
ing this new entity as a long single-packet message.
Using the equation for D(MRTS), we get an equation
for minimum round trip delay, simplified, not packet-
ized

D(MRTSNP) = H*(L + PxTy, + C)

+ H+(L + T, + C).)
We can rewrite this as
D(MRTSNP) = (P — 1)xH*T},

+ Hx[2+(L + C) + T, + T1l. (10)

Subtracting eq. (8) from eq. (10) we get a difference
in delay

D(MRTDIF) = (P — 1)*[(H — 1)*T, — C]. (11

We make the following observations:

1. Clearly, if P=1, D(MRTDIF)=0. There is no
difference between the two techniques for single-
packet messages.

2. Assuming P> 1, if H=1, DIMRTDIF) = —(P —
1)*C, <0. That is, if H=1 and P>1, it involves
more delay to break a message into packets because
of the added processor overhead (generally small).

3. Assuming T, >C,, that the processor time is
small, if P> 1 and H > 1, then D(MRTDIF) > 0. This
is the usual case, and constitutes the basic reason to
break messages into packets.

We can return to the numerical example used ear-
lier with the equivalent conditions for a single packet
message as long as the 3 packet message considered
above (see table 4):

TABLE 4

P=1

H=3

C=Cp =05
HOP 1 2 3 total
C 1 - 1 1 3
L 0 1 3 4
T 6 9 6 21
total 7 11 10 28

J.M. McQuillan, D.C. Walden

Total delay = 28, as opposed to 21 for the packetized
case (see fig. 2b).

Queueing delay. We have examined the minimum
round trip delay as a function of message length, net-
work path length, and the packetizing strategy. It is
appropriate at -this point to analyze the effects of
additional delays which may be present. To perform
the minimum delay analysis, we made 3 assumptions,
each of which should be re-examined at this point:

1. C4=0. The packet arriving may have to wait
on an input queue before it is serviced by the proces-
sor. This time is generally quite small, but it is a
random variable which may take on large values if
there are time-consuming high-priority tasks in the
system.

2. Dy=0. This is the major assumption which
must be modified in the analysis of actual delays in a
network. A great deal of theoretical work has been
done in studying queueing delay, particularly by
Kleinrock [20,21], who has used both analysis and
simulation in this regard. For the simplified discus-
sion at hand, it is sufficient to note that each packet
on the queue adds an additional T+ C; to the delay
of all packets behind it on the queue.

3. D,=0. The accuracy of this last assumption
varies widely with the type of network and line being
considered. For some wideband circuits, particularly
satellite channels, the error rates are very low and few
retransmissions may be necessary for reasons of
errors. However, satellite links may be used in a

- broadcast competition mode so that some packets are

lost in collision with others. Finally, there is always
some chance that the adjacent node will refuse to
accept a packet for lack of processing resources.

Low delay for interactive traffic. Perhaps the most
important consideration about delay in a network is
this: some traffic consists of interactive, high-priority
messages and this traffic must be delivered to its des-
tination as rapidly as possible. This is in contrast to
bulk transfer traffic which is not so delay-critical. The
most obvious case of such interactive traffic is most
man—computer dialogue, which consists of rather
short messages between the computer and a man at a
terminal. Here there is a definite threshold for delay.
Below this threshold, delay is acceptable, and above it
delay is unacceptable. There is no added benefit if the
delay is considerably below the threshold, and it is
likely that once the delay is much above the thresh-
old, almost any value of delay is equally unaccept-
able. 7

Another way of looking at the bimodal nature of

The ARPA network design decisions

network traffic is to consider that much of the delay
for an interactive message is in the network itself.
That is, it is generated and quickly sent into the net-
work, When it is delivered, it will be processed
quickly at the destination Host. Bulk transfers on the
other hand may experience lengthy delays outside the
network due to buffering considerations and the very
size of the data (secondary storage or tapes or cards
may be involved in the data transfer, greatly increas-
ing delay).

2.2.2. Throughput

In this section we consider what throughput per-
formance characteristics are possible in a given net-
work. Some of this material was presented in [24]
and [25]. The topics discussed below include an anal-
ysis of nodal processor bandwidth, an examination of
circuit overhead, a quantification of the buffering in
packets required for a network line and the buffering
in messages required for a network path, the through-
put requirements of bulk transfer traffic, and the
tradeoff between delay and throughput.

The effective bandwidth of the node processor. We
will first examine the effective processing capability
of the node computer in a network with variable mes-
sage length. Some numerical examples will be given to
support the intuitive notion that the processor is
most effective for long messages, given some .very
general assumptions about the packet processing
involved.

We begin by defining some new quantities of inter-
est in studying throughput in networks. The quanti-
ties which we will take as fundamental variables are as
follows: :

1. B4 = the number of Host data bits in a packet.

2. By = the number of software overhead bits per
packet. These bits include header information such as
address, and identifying information such as message
number.

3. By, = the number of hardware overhead bits per
packet. These are typically framing bits for the cir-
cuit, and error detection bits such as checksums or
redundant information.

4. P=the number of packets per message, as
above.

5. Byyt = the total number of Host data bits per
message. a ’

P

Byt = PxBy — unused bits in the last packet.

Now we will examine how long it takes the node
processor to store and forward a message. As noted

251

above, we ignore the processing at the source node
and at the destination node. The time required to
process a store-and-forward message is a function of
the following parameters:

6. C=the packet processing time, as above. We
assume that C is independent of packet length or
type. To the extent that this is not true, the length-
dependent component of C can be accounted for in
item 8 below.

7. BWPg = the fraction of the bandwidth of the
processor taken by overhead. Due to certain neces-
sary periodic processes within the node, notably the
routing computation, effective processor bandwidth
is reduced.

8. BWIO = the I/O rate of the node in bits/sec. We
assume here that BWIO is a linear function of the
number of bits in the message. In most I/O architec-
tures, it is probably a function of the number of com-
puter words in the message, which is identical apart
from unused bits in the last word. We are also assum-
ing that the I/O transfer steals cycles from the pro-
cessor, reducing its effective bandwidth.

9. I'=the I/O transfer time in seconds. We will
denote the I/O time for a packet, a message, and a
RFNM as I, I, and I, respectively:

I, =2#(B4 + B,)/BWIO,
Im = 2*(Btot + P*Bs)/BWIO:
I, =2+B/BWIO.

10. My = the total time taken to process a mes-
sage. ‘

My =Cx(P+ 1)*(1 + BWPy) + I, + 1.

11. BWP,4 = the maximum data bandwidth that the
node can support,
BWPd = Btot/MT-

This is the number of Host data bits per second that
the node can process.

12. BWP; = the maximum line bandwidth that the
node can support.

BWPg = [Byor + (P + 1)*(Bs + Bp)| /M.

This represents a processing capability limit on the
number and speed of the circuits that can be con-
nected to a node. The difference between the two
quantities, BWP;, — BWPy, is a measure of the line

-overhead at a given message length.

At this point, a numerical example may be illustra-
tive. As presented in [24], in the ARPA Network, the

252

1000 / / P

800~

H

o)

<]
T
]

n

Q

(=]
[&]
o
Z
Y

o]

THROUGHPUT (Kbs)
(o4
(o3
o

8001 i 1
600 - /??////_
400]
200 316 IMP |

of L é L | l | I 5

3 4 5 6
PACKETS/MESSAGE
Fig. 4. IMP processor bandwidth vs. message length.

processor bandwidth of the IMP, both BWP4 and
BWPg, can be plotted as functions of the message
length, and some results are given in fig. 4. (The dis-
continuities indicated in the curves are the result of
packetizing messages.) ,

The effective bandwidth of the network circuits.
In this section we will consider some of the factors
acting as overhead to reduce the effective circuit
bandwidth for network lines. That is, we wish to cata-
log all the kinds of transmission that take place on
the network lines that are not actual Host data bits,
and from this accounting determine which factors are
the dominant ones. There are three basic kinds of line
overhead:

1. Line overhead in bits/packet. We have detailed
two components of this overhead earlier, Bg and By,

2. Line overhead in bits/message. In the terminol-
ogy we have been using, the RFNM is overhead on a
message basis, and under our assumption that it is a
minimum length packet, it contributes a number of
bits equal to B + By,.

3. Line overhead in bits/second of network system
traffic. Some examples of this kind of traffic are
given, along with the approximate order of magnitude
for the traffic rate in the ARPA Network, in table 5.

We will make the assumption that routing mes-
sages are the primary source of traffic other than
messages between Hosts. For this reason, we will

J.M.: McQuillan, D.C. Walden

Table 5
Traffic rate in ARPA Net-
work (bits/sec)

routing 1000

line alive/dead 100

NCC status reports 10

core reloads and dumps ‘1-10

define the variables
B, = the number of bits in a routing message,
F, = the frequency of routing messages [1/sec],
BWC, = B#F, =
the bandwidth of the circuit used for routing,

and ignore the other components of periodic over-
head.

We can now total the overhead from all considera-
tions, by converting to a common dimension, bits/
sec. In order to do this, we must introduce another
variable,

F, = the number of packets per second.

We then can express the total bandwidth of the cir-
cuit given to overhead as

BWCo = By#F; + (By + Bp)F, + (By + By)#F o/P.

routing packets RFNMs

We can rewrite this as
BWC, = BWC, + (B, + By)*F| p=l<(P + 1)/P.

In comparison with this overhead rate is the actual
data rate on the circuit,

BWCy = By#Fp.
We can evaluate the fractional overhead percentage as
BWC,/BWC, = (BWC,)/(Bg*Fp)

+ (Bg + Bp)*(P + D)/ (Bg#P).

Another quantity of interest is the maximum data
rate that can be attained for given values of the sys-
tems parameters. Given a circuit with bandwith BWC,
the maximum data rate occurs when F), is at a maxi-
mum

Fp(max) = (BWC — BWC,)/By.

The ARPA network design decisions

Substituting the expression for BWC, above, we get
Fp(max) =(BWC — B,*F,)/
[Ba + (Bs + Bp)*(P + 1)/P] ,

The numerator indicates that the routing message
bandwidth comes off the top, leaving a reduced effec-
tive bandwidth, which is then used for both data bits
and packet and message overhead bits. The graphs in
fig. 5 show the behavior of some of these variables;
the variable plotted is Fp(max)+By, that is BWC —
BWC,y, which is the maximum data rate for a given
message size.

The packet buffering required for network cir-
cuits. We now turn to an examination of the number

2 T T T T T T T
SRS St SR
- 1.344 Mbs]
5 pa—
2H X
e s e e e st
— . 230.4 Kbs
~ 100
(2] —
L0 —
X [—
N N]
2 -
— e gt
] — 50 Kbs |
o]
o
I 2 —
-
10
5 : /_—————_’-————‘_—-——
9.6 Kbs
2 -
o A R R |
o] 2 6 8

4
PACKETS/MESSAGE
Fig. 5. Effective circuit bandwidth vs. message length.

253

of packet buffers required to keep a communications
circuit fully loaded. This number is a function not
only of line bandwidth and distance but also of
packet length, nodal delays, and acknowledgment
strategy. We will assume that the node buffers each
packet that it transmits until it receives an acknow-
ledgment, meanwhile transmitting other packets to
utilize the circuit efficiently. If it does not receive the
acknowledgment in the expected time, it retransmits
the packet. We also assume that packet buffers are a
fixed size large enough to hold the largest packet. The
expected time for an acknowledgment to return is the
sum of:

1. T, =the transmission time for the packet, a
function of line bandwidth.

2. L = speed-oflight delay for the first bit of the
packet to arrive at the other node, a function of line
length.

3. C=C, + C; = the processing delay in the other
IMP, to receive the packet and return the acknow-
legment.

4. D, = queueing delay for the returning acknow-
ledgment, the time it waits for any other transmis-
sions ahead of it. ,

5. T, = the transmission time for the acknowledg-
ment.

6. L =speed-of-light delay for the first bit of the
acknowledgment to arrive at the first node.

7. C.=the processing delay for the acknowledg-
ment.

Our first simplifying assumption is that the proces-
sing times are small compared to the other delays and
can therefore be ignored:

Cr=Ct=0'

We can then state that the minimum number of
packet buffers needed to keep a circuit fully loaded is

BF,=(Ty+L+Dg+T,+L)T,.

This can be rewritten in somewhat more meaningful
form as

BF, = 1+24L/T, + (Dg + T)/T,

This expression indicates that one buffer is always
necessary, to account for the packet transmission
time itself. More buffers may be required if the cir-
cuit is long compared to the packet transmission
time, or if the acknowledgment transmission takes a
long time compared to the packet. Stated differently,
the number of buffers needed to keep a line full is

254

proportional to the length of the line and its speed
and inversely proportional to the packet size, with
the addition of a constant term.

In order to proceed further with the analysis, we
need to introduce two new terms:

T = the transmission time of
the shortest allowable packet

T = the transmission time of
the longest allowable packet

We also need to postulate a traffic mix of long and
short packets, with x/y the ratio of short packets to
long packets in the channel. Now we can define D,
and T, in terms of T and Ty We make a worst-case
assumption for Dy: Dy = Ty, the acknowledgment has
highest priority (equivalently, it piggybacks on all
packets), but it must wait for the transmission of a
maximum-length packet which has just begun.

The assumption for T, is rather arbitrary:

T, = (Ts+ Ty)/2, the acknowledgment piggybacks
on an “average” length packet.

We now state the result for the number of packet
buffers required given the above set of assumptions:

BFp: 1+ [2*L+TSZ+(TS+TQ)/2]/T;)~

10 100 1000 10,000 45,000

1

J.M. McQuillan, D.C. Walden

Using the ARPA Network values of T, and Ty given
above in table 2, and choosing a variety of line
lengths and traffic mixes (shown as the ratio of short
packets, S, to long packets, L), we can present some
numerical results as a family of curves shown in fig. 6.
Note that the knee of the curves occurs at progres-
sively shorter distances with increasing line speeds. In
fact, if we define the knee to occur when the linear
term is equal to half of the constant term, then the
knee occurs when

L =(Ts+2+T, + 3%Ty)/4,

or for a line length 225%10%/BWC miles. The con-
stant term dominates the 9.6 Kbs case, and it is
almost insignificant for the 1.4 Mbs case. Note also
that the separation between members of each family
of curves remains constant on the log scale, indicating
greatly increased variations with distance.

The message buffering required for network paths.
This section takes up a topic which closely parallels
that of the last section. Here we will examine the
number of messages needed to obtain full bandwidth
over a network path of many lines. That is, we will
compute how many messages must be in flight
between two nodes in order to keep all the interme-
diate lines fully loaded. Actually, the best one can do

10 100 1000 10,000 45,000

1
1000

1000
T T TT1TTT T T 1T T IIlHH] T TYTTT? LRI T T Ty T TTTTIT LRI T |I|H?
S.6 kilobits/sec 3 [50 kilobits/sec E
= —= - 1S:0L 4 L 4
1ok 8S:1L 4 L 4100
E —-— 2S:1L J E 3
- T 1S:1L] - .
| —--—0S:1L - 2 L B
L e o o P e e e ————— 0
» 10 .///—/ ? = 3
x b e —-T=="" . 31 E . 3
L T N i Froo—m T ~
w e — ———m e 1 - — = 7]
W - - .
=)
m) SR U1 A RTINS R TR 1] S S S UR Tt R A B IeN VAR W V7Y S S 1T RO S S N U 111 G U W W WU 7 B e vt
& 1000 T T T T T T T T T T OrT T T OO T T T T 1110 THTE 000
4 = I T /3 // B
« F230.4 kilobits/sec ‘ 1 F1.400 kilobits/sec ROV
g - / 1 / ///,, B
=z i T vl
2 ok = 7 =100
z E E 3
|- 4 B
10 - =0
E 3
3 3
1 Lol el il il 1 Lol vl el el ol
100 1000 10,000 45,000 1 10 100 1000 10,000 45,000

1 10
’ LINE LENGTH (MILES)
Fig. 6. Packet buffering for full line utilization.

The ARPA network design decisions

is to keep all the lines in the path of the lowest cir-
cuit bandwidth fully loaded. Tt turns out that this
analysis is quite simple given all the definitiions of the
preceding sections. The number of message buffers
needed is computed by taking the round trip delay
for a message and dividing it by the time taken to
transmit a single message. That is,

BF,, = D(MRT)/ [P+(T,, + Cy)].

Using eq. (6) in section 2.2.1, we can obtain a more
detailed expression for the simple case of equal delay
at each hop:

BF, = (P — 1)/P
+H[2+(L + C) + T, + T/ [Po(T, + €Y.

100

255

It is clear from this expression, and on intuitive
grounds, that BF, is a minimum for maximum length
messages, that is for large P. The curves in fig. 7 show
the dependence of BFy, on line characteristics and on
the length of the network path, for P=8 and ARPA
Network values of the parameters. For each of four
line speeds, the buffering requirements are plotted for
network paths made up of a number of land lines (the
length of the lines is given with each curve). Also
shown are the requirements for the same network
paths with the addition of one satellite link running
at the same bandwidth as the land lines.

The consequences of the above discussion are
several. For the communications subnetwork, it
means that the nodes must be able to do bookkeeping

100 —

TOT T TTT T T T T TTT

T T 171
11

Ll

ONE SATELLITE

T
|

1 1T

NO SATELLITE

T T T

I

L4l

L

ONE SATELLITE

3000 mi

3000 mi
1000 mi

0-3000 mi] C 1000mi
NO SATELLITE 0-3600mi | i 100m]
n i _ - 4
(O] 9.6 kbs 50 kbs
c‘ 1 i i 1 1 1 l | L | |
| 1 Loi 1] t | - 111 1 I3 | | 1
9) K 10 100 1 10 100
»n
g
100 T — T T T 100 LI B B T
"6 . C 7 :—/—’TK 3000 mi]
L A = 1 i -
: [ONE SATELLITE] C ONE SATELLITE . coomi
o R 3000mi] 0-3000 mi]
Z L 3000mi | i
1000 mi
B 100 mi
1000 mi
Tob— _ 0 100mi _|
NO SATELLITE 3 R
100 mi]]
~NO SATELLITE
230.4 kbs 1400 kbs
1 1 P B I B 1 L) S) 1 L | | 1 i1 1111
1 10 100 1 10 100

No. of land lines

Fig. 7. Message buffering for full path utilization.

256

on several messages in flight between two nodes. Fur-
ther, the network must buffer these messages in the

memory of the source or destination node for the -

duration of their flight, in addition to the packet buf-
fering that takes place instantaneously at the inter-
mediate nodes along the path. This has some impor-
tant ramifications for the design of the software for
the node computer. A second set of issues is the
effect of message buffering on Host computers. It is
clear that the communication protocols that the
Hosts use must also be engineered to the parameters
of the network, if they are to obtain full throughout
levels.

High throughput for long data transfers. The
several topics examined in this section all point to a
single conclusion: the larger the packets in a message,
and the larger the messages in a data transfer, the
higher the level of throughput that is potentially
attainable. For reasons of processor overhead, circuit
overhead, and buffering considerations within the
nodes, it is always better to have long packets and
messages if high data rates are desired.

The tradeoff between low delay and high through-
put. It is clear that the two goals of low delay and
high throughput are often in conflict because the
node has limited resources with which to service its
Hosts and lines. It is difficult to guarantee both low
delay and high throughput to several competing
sources. The approach taken in the ARPA Network is
as follows: the IMP program has been designed to per-
form well under bimodal traffic conditions. It pro-
vides quick delivery for short interactive messages and
high throughput rates for long files of data. This
optimization of the program for a specific model of
traffic behavior occurs at many levels, and is essential
for balanced performance characteristics. (Other con-
flicts exist, such as the conflict between high through-
put and congestion/deadlock control mechanisms.)

2.2.3. Cost

In this section we present some of the primary
issues regarding the cost of computer networks. There
are two kinds of costs considered here: the cost of
the actual network components, and the cost of the
use of the network. The first cost is a measure of the
expense of connecting some component to the net-
work, and the second is 2 measure of the expense of
utilizing the resources of that component. We are
concerned here with outlining the effects of these
costs on the balance among the various system param-
eters of the network. The more specific effects rout-

J.M. McQuillan, D.C. Walden

Table 5

Some representative line costs

Bandwidth Termination cost Line cost
(Kb/sec) ($/month) ($/month/mile)
9.6 650 0.40
19.2 850 2.50
50 850 5.00
230.4 1350 30.00

ing algorithms have on the cost of networks are dis-
cussed in section 2.3, on routing.

Low cost for network connectivity. The first point
to take up in consideration of the cost of networks is
the cost of connectivity. The basic variables are cir-
cuit costs and node costs. Some typical values for
these costs in an actual network may be illustrative;
the values for the ARPA Network are shown in tables
5and 6.

Several implications follow from these figures:

1. The layout problem for networks is an impor-
tant one, since reductions in the total number of cir-
cuit miles in a network represents substantial dollar
savings. :

2. Low cost comes at the expense of both low
delay and high throughput if lower line speeds are
chosen.

3. Low cost also comes at the expense of low
delay and high throughput if fewer lines are used,
since more traffic is forced to use.each line.

4. As a consequence of these points, some network
designers, notably the Network Analysis Corporation
[29,30], attempt to find a relatively low cost net-
work layout and then test it by simulation to deter-
mine if average message delay is below some thresh-
old and the throughput obtained (when all nodes

Table 6

Some representative node costs

Machine Cost
Type K$)

Configuration (Kb total)

516 IMP 100 up to 4 Hosts (400)

up to 5 lines (800)

up to 7 devices total

up to 4 Hosts (300)

up to 5 lines (600)

up to 7 devices total

up to 2 Hosts (300)

up to 3 lines (600)

up to 64 terminals (100)

316 IMP 50

316 TIP 100

The ARPA network design decisions

send to all other nodes) is above some threshold.

Low cost for network use. A second aspect of the -

cost of networks is the cost of the use of the net-
work, which may be counted in one of several ways:

1. $/bit, $/character, $/packet, or $/message costs
for the shipping of data through the network.

2. These charges may be rated per mile or per hop
or may be distance-independent.

3. There may be different grades of service at dif-
ferent costs,

These costs are the translation into dollars of the
utilization rates for various network resources. These
resources can be catalogued as follows:

1. line bandwidth
2. node processor bandwidth
3. node storage

2.2.4. Reliability

In this section we present some of the primary
issues regarding the reliability of computer networks.
In parallel with the discussion of network cost above,
there are two basic topics examined here: the reliabil-
ity of the network connections themselves, and the
reliability of the network services. In the first instance,
we are interested in how reliable the network compo-
nents are. In the second case, the subject is the reli-
ability of the use of the network facilities for data
transmission. Again we are focussing in this section
on the broad design issues which affect network per-
formance as a whole. In section 2.3, on routing, we
examine closely the effects that routing algorithms
can have on network reliability.

High reliability of network connectivity. One can
attempt to minimize the probability that a line or
node will be inoperative, and thus to reduce the
probability that a node cannot communicate with the
rest of the network. In practice, this is a matter of
maintaining a high mean time between failures and a
low mean time to repair. One can also measure reli-
ability in terms of the number of nodes and/or lines
necessary to disconnect the network, taking into con-
sideration the probability of the various events. Alter-
natively, one can consider the size of the components
of the disconnected network, or the fraction of node
pairs not connected by any network path.

A different level of solution to the problem of net-
work reliability is redundant network design, primar-
ily in the layout of the circuits connecting the nodes.
In this way, a network can be constructed which is
much more reliable as a whole than any one compo-
nent. In the ARPA Network, a design constraint has

257

been that an IMP must be connected to the network
by at least two circuits, so that the probability that
an IMP cannot communicate with the network is very
small. Of course, this principle can be applied to
other components in the network as well. The node
computers can be backed up with alternate com-
puters, or may be equipped with redundant interfaces
and processors. The Host computers also may wish to
be connected to the network at more than one point
by means of separate communications facilities.

High reliability of network use. The reliability of
the message processing can be measured in terms of
the percentage of messages delivered, or the detected
error rate, or the undetected error rate. Measures to
improve the reliability of message processing range
from error detecting and correcting hardware to
redundancy in software to backup message storage.
The costs of these approaches are multiple: they add
to the complexity of the system, and may degrade its
performance, in addition to representing a dollars
cost. In general, the communications subnetwork
becomes more costly as these measures of reliability
are improved. At some point, it becomes appropriate
to pass the cost of these improvements on to the user.
However, a minimum level of reliability is necessary
for the operation of the communications subnetwork.
Guarantees concerning a grade of service better than
this minimum level might reasonably cost more.

The tradeoff between low cost and high reliability.
It is clear that there is a natural tradeoff between low-
cost networks and high-reliability networks. This
tradeoff exists in building either sparse networks or
highly-connected networks, and in providing special
mechanisms to ensure the reliable transmission of
data or choosing not to implement such safeguards.
In short, the price for reliability must be paid some-
where, either in the actual cost of constructing and
maintaining the network, or in the cost to the user of
unreliable network service. It is difficult to generalize,
but it may often be the case that a low-cost network
without sufficient measures for reliability may prove
more costly to use in the long run than a network
with a higher cost for higher network reliability,
Stated differently, it may be cheaper to build a net-
work to be fault-tolerant, redundant, and error-
detecting than to build these measures into each user
process that communicates with the network.

2.3. Key design choices

We believe there are three major areas in which the
key choices must be made in designing a packet-

258

switching network. First, there is network equipment
design, including the node computer, the network cir-
cuits, the Host-to-node connections, and overall con-
nectivity. Second, there is store-and-forward subnet-
work system design, primarily the routing algorithm
and the node-to-node transmission procedures. Third,

there is source-to-destination system design, which"

encompasses end-to-end transmission procedures and
the " division of responsibility between Hosts and
nodes. These topics are covered in the following sec-
tions. (Note: there -are strong interactions between
the topics discussed .in the second and third areas.
The end-to-end traffic requirements of a specific user
can only be met if the store-and-forward subnetwork
has mechanisms which act in concert with the source-
to-destination mechanisms to provide the required
performance. Discussion of this interaction, an im-
portant- consideration in packet-switching network
design, is beyond the scope of this paper.)

3. Network equipment design

In this section we outline some of the design issues
associated with the choice of the node computer, the
network circuits, the Host-to-node connections, and
overall connectivity. Since the factors affecting these
choices change rapidly with the introduction of new
technology, we discuss only general observations and
design questions.

3.1. The node computer

The architecture of the node computer is related
to several - other network design' parameters, as
detailed below.

3.1.1. Processor

The speed of the processor is important in deter-
mining the throughput rates possible in the network.
The store-and-forward processing bandwidth of the
processor can be computed by counting instructions
in the inner loop. The source-to-destination proces-
sing bandwidth can be calculated in a similar fashion.
These rates should be high enough so that the entire
bandwidth of the network lines can be used, i.e., so
that the node is not a bottleneck. It has been our

experience that the speed of the processor and

memory is the main factor in this bandwidth calcula-

tion; complex or specialized instruction sets are not

valuable because simple instructions make up most of
the node program.

J.M. McQuillan, D.C. Walden

A different aspect of the node computer which
can also affect throughput is its responsiveness. Be-
cause circuits are synchronous devices, they require
service with very tight time requirements. If the node
does not notice that input has completed on a given
circuit, and does not prepare for a new input within a
given time, the next input arriving on that circuit will
be lost. Likewise on output, the node must be respon-
sive in order to keep the circuits fully loaded. This
requirement suggests that some form of interrupt sys-
tem [17] or high-speed polling device [18] is neces-
sary to keep response latency low, and that the over-
head of an operating system and task scheduler and
dispatcher may be prohibitive. Finally, we note that
the amount of time required by the node to process
input and output is most critical in determining the
minimum packet size, since it is with packets of this
size that the highest packet arrival and departure rates
(and thus processing requirements) can be observed,
Of course, data buffering in the -device interfaces can
partially alleviate these problems.

3.1.2. Memory

The speed of memory may be a major determinant
of processor speed, thus affecting the node band-
width. An equally important consideration is memory
speed for 1/O transfers; since the node’s overall band-
width .results from a division of total memory band-
width based on some processing time for a given
amount of I/O time. First, there is the question of
whether the I/O transfers act in a cycle-stealing fash-
ion to slow the processor or whether memory is effec-
tively multi-ported to allow concurrent use. Then
there is the issue of contention for memory among
the various synchronous I/O devices. In a worst-case
scenario; it is possible for all the I/O devices to
request a memory transfer at'the same instant, which
keeps memory continuously busy for some time
interval. A key design parameter is the ratio of this
time to the available data buffering time of the least.
tolerant 1/O device. This ratio should be less than
one, and may therefore determine how much I/O can
be connected to the node.

The size of the memory, naturally, is another key
parameter. It ‘has been our experience [17,24] that
the program and associated data structures take up
the majority of storage in the node. The remainder of

- memory is devoted to buffering of two kinds: packet
- buffering between adjacent nodes, and message buf-

fering between source and destination nodes. These
requirements can be calculated quite simolv in each

The ARPA network design decisions

case as the product of the maximum data rate to be
supported times the round trip time (for a returning
acknowledgment). In large networks it may be neces-
sary to rely on sophisticated compression techniques
to ensure that tables for the routing algorithm, the
source-to-destination transmission procedures, and so
on, do not require excessive storage. The node storage
in the ARPA Network has been barely adequate.

3:1.3.1/0 :

The speed of the I/O system has been touched
upon above in relation to processor and memory
bandwidth. Other factors worth noting -are the
internal constraints imposed by the 1/O system itself
—its delay and bandwidth. A different dimension, and
one that we have found to be inadequately designed
by most manufacturers, is the flexibility and exten-
sibility of the 1/O system. Most manufacturers supply
only a limited range of I/O options (some of which
may be too slow or too expensive to use). Further,
only a limited number of each type can be connected.
A packet-switching network node requires high per-
formance from the I/O system, both in the number of
connections and in their data rates.

In addition, the design of the line termination
hardware can have a significant impact on the proces-
sor loading and responsiveness. For example, in the
ARPA Network, the line termination interfaces
include sufficient hardware to calculate the 24-bit
CRC used between IMPs, thus relieving the processor
of the burden of the calculation. These interfaces also
operate via direct memory access channels; the pro-
cessor is interrupt-driven and instructs the interface
only once per packet.

3.1.4. General architecture

There are other factors to consider in evaluating or
‘designing a node processor apart from performance in
terms of bandwidth and delay. As we mentioned,
extensibility in 1/O is very important and compara-
tively rare; it is more common to find memory sys-
tems which can be expanded. Processor systems
-which can be expanded are not at all common,
and yet processor bandwidth may be the limiting
factor in some node configurations. Without a
modular approach allowing processing, memory and
I/O growth, the cost of the node computer can be
quite high due to large step functions in component
cost. ,

Another aspect of node computer architecture is
its reliability, particularly for large systems with

259

many lines and Hosts. A failure of such a system has a
large impact on network performance. We have
studied these issues of performance, cost, and reliabil-
ity of node computers in a packet-switching network,
and have developed, under ARPA sponsorship, a new
approach to this problem. Our computer, called the
Pluribus, is a multiprocessor made up of minicom-
puters with modular processors, memory, and I/O
components, and a distributed bus architecture to
interconnect them [18]. Because of its specially
designed hardware and software features [32], it
promises to be a highly reliable system. We point out
that many of these issues of performance, cost, and
reliability could become crtically important in very
large networks serving thousands of Hosts and termi-
nals.

We also note that there are so many stringent tech-
nical constraints on the computer that a choice made
on other grounds (e.g., expediency, politics), as is
common, is particularly unfortunate.

3.2. The network circuits

We next consider some of the important charac-
teristics of the circuits used in the network.

3.2.1. Bandwidth

The bandwidth of the network circuits is likely to
be their most important characteristic. It defines the
traffic-carrying capacity of the network, both in the
aggregate and between any given source and destina-
tion. What is less obvious is that the bandwidth (and
hence the time to clock a packet out onto the line)
may be the main factor determining the transit delays

in the network. The minimum delay through the net-
work depends mainly on circuit rates and lengths, and

additional delays are largely accounted for by queue-
ing delay, which is directly proportional to circuit
bandwidth. These two factors lead to the general ob-
servation that the faster the network lines, the longer
the packet can be, since long packets have less over-
head and permit higher throughput, while the added
delay due to length is less important at high circuit
rates. In addition, more packet and message buffering
is required when higher speed circuits are used. -

3.2.2. Delay

The major effect of circuits with appreciable delay
in a system requiring packet acknowledgement is that
they require more buffering in the nodes to keep
them fully loaded. That is, the node must maintain
more packets in flight at- once -over: a circuit with

260

longer delay. This effect may be so large (a circuit
using a satellite has a delay of a quarter of a second)
as to require significantly more memory in the nodes
[24]. This memory is needed at the nodes connected
to the circuit to permit sufficient packet buffering for
node-to-node transmission using the circuit. The
subtle point is that additional buffering is also
required at all nodes in the network that may need to
maintain high source-to-destination rates over net-
work paths which include this circuit. If they are to
provide maximum throughput, they need sufficient
message buffering to keep the entire network path
fully loaded.

3.2.3. Reliability

Traditionally, the telephone carriers have quoted
error rates in the following manner: “No more than
an average of 1 bit in 10 to the 6th bits in error.”
This definition is not entirely adequate for packet
switching, though it may be for continuous transmis-
sion. For packet switching, the average bit error rate
is less interesting than the average packet error rate
(packets with one or more bits in error). For exam-
ple, ten bits in error in every tenth packet is a 10%
packet error rate, while one bit in error in every
packet is a 100% packet error rate, yet the two cases
have the same bit error rate.

An example of an acceptable statement of error
performance would be as follows: The circuit oper-
ates in two modes. Mode 1: no continuous sequence
of packet errors longer than two seconds, with the
average packet error rate less than one in a thousand.
Mode 2: a continuous sequence of errors longer than
two. seconds with the following frequency distribu-
tion:

> 2sec nomore often than once per day

> 1min no more often than once per week
>15min no more often than once per month
> 1 hour no more often than once per 3 months
> 6 hours no more often than once per year

> 1day never

While the figures above may seem too stringent in
practice, the mode 1 bit error rate is actually quite
lax compared to conventional standards. In any case,
these are the kinds of behavior descriptions needed
for intelligent design of packetswitching network
error control procedures. Therefore, it is important
that the carriers begin to provide such descriptions.

The packet error rate of a circuit has two main
effects. First, if the rate is high enough, it can degrade

J.M. McQuillan, D.C. Walden

the effective circuit bandwidth by forcing the retrans-
mission of many packets. While this is basically a
problem for the carrier to repair, the network nodes
must recognize this condition and decide whether or
not to continue to use the circuit. This is a tradeoff
between reduced throughput with the circuit and
increased delay and less network connectivity with-

out it, Before the circuit can be used, it must be
working in both directions for packets and for con-

trol information like routing and acknowledgments,
and with a sufficiently low packet eiror rate.

The second effect of the error rate is present even
for relatively low error rates. It is necessary to build a
very good error-detection system so that the users of
the network do not see errors more often than some
specified extremely low frequency. That is, the net-
work should detect enough errors so that the effec-
tive network error rate is at least an order of magni-
tude less than the Host error or failure rate. A usual
technique here is a cyclic redundancy check on each
packet. This checksum should be chosen carefully; to
first order, its size does not depend on packet length
and it should be quite large, for example 24 bits for
50-Kbs lines and 32 bits for multi-megabit lines or
lines with high error rates. (Note: assuming that the
probability of packet error is proportional to the pro-
duct of packet length and bit error rate, the check-
sum length should be proportional to the log of the
product of the desired time between undetected
errors, the bit error rate, and the total bandwidth of
all network circuits.)

3.3. The Host-to-node connections

We examine the bandwidth and reliability of the
Host connection to the network in the next two sec-
tions.

3.3.1. Bandwidth ‘
The issues in choosing the bandwidth of the Host
connections are similar to those for the network cir-
cuits. In addition to establishing an upper | bound on
the Hosts’ throughput, the rate is also an 1mportant
factor in delay. The delay to send or receive a long
message over a relatively slow Host connection may
be comparable in magnitude to the network round

-trip time. To eliminate this problem, and also to

allow high peak throughput rates, the Host connec-
tion bandwidth should be as high as possible (within
the limits of cost-effectiveness), even higher than the
average Host throughput would indicate. By the same

The ARPA network design decisions

argument given above for packet size, a higher speed
Host connection allows the use of a longer message
- with less overhead and Host processing per bit and
therefore greater efficiency.

3.3.2. Reliability

The reliability of the Host connection is an impor-
tant aspect of the network design; several points are
worth noting. First, the connection should have a
packet error rate which is at least as low as the net-
work circuits. This can be accomplished by a highly
reliable direct connection locally or by error-detec-
tion and retransmission. The use of error control pro-
cedures implies that the Host-node transmission pro-
cedures resemble the node-node transmission proce-
dures which are discussed in a later section. Second,
if the Host application requires extremely high reli-
ability, a Host-to-Host data checksum and message
sequence check are both useful for detecting infre-
quent network failures. Third, if the Host requires
uninterrupted network service, and the Host is reli-
able enough itself to justify such service, multiple
connections of the Host to various nodes can improve
the availability of the network. This option compli-
cates matters for the source-to-destination transmis-
sion procedures in the nodes (e.g., sequencing) since
there may be more than one possible destination
node serving the Host.

3.4. Overall connectivity

The subject of network topology is a complex one
[15], and we limit ourselves here to a few general ob-
servations: In practice, it seems that the connectivity
of the nodes in the network should be relatively uni-
form, It is obvious that nodes with only a single line
are to be avoided for reliability considerations but
nodes with many circuits also present a reliability
problem since they remove so much network connec-
tivity when they are down. We also feel that the
direction for future evolution of network geometries
will be towards a “central office” kind of layout with
relatively fewer nodes and with a high fan-in of
nearby Hosts and terminals. This tendency will
become more pronounced as higher reliability in the
node computer becomes possible, even for large sys-
tems. One reason that we favor this approach is that a
large node computer presents an increased oppor-
tunity for shared use of the node resources (processor
and memory) among many different devices leading

$n a i1l rmaera affictiant and Anct affastivra 1l a

261

mentation. This trend will mean that in the future,
even more than now, a key cost of network topology
will be the ultimate data connection to the user (Host
or terminal), who may be far from the central office.
Concentrators and multiplexors have been the tradi-
tional solution; in packet-switching networks, a small
node computer should fill this function. In conclu-
sion, we see flexibility and extensibility as two key
requirements for the node computer. These factors
together with increasing performance and fan-in
requirements imply a very high reliability standard as
well,

4. Store-and-forward subnetwork system design

We cover two major areas in our discussion of
store-and-forward subnetwork system design, the
routing algorithm and the node-to-node transmission
procedures, both of which are packet-oriented and
require no information about messages.

4.1. The routing algorithm

The fundamental step in- designing a routing
algorithm is the choice of the control regime to be

“used in the operation of the algorithm. Non-adaptive

algorithms make no real attempt to adjust to chang-
ing network conditions; no routing information is
exchanged by the nodes, and no observations or mea-
surements are made at individual nodes. Centralized
adaptive algorithms utilize a central authority which
dictates the routing decisions to the individual nodes
in response to network changes. Isolated adaptive
algorithms operate independently with each node
making exclusive use of local data to adapt to chang-
ing conditions. Distributed adaptive algorithms utilize
internode cooperation and the exchange of informa-
tion to arrive at routing decisions. (For 2 much more
detailed discussion, see [26].)

4.1.1. Non-adaptive algorithms

Under this heading come such techniques as fixed
routing, fixed alternate routing, and random routing
(also known as flooding or selective flooding).

Simple fixed routing is too unreliable to be con-
sidered in practice for networks of more than trivial
size and complexity. Any time a single line or node
fails, some nodes become unable to communicate
with other nodes. In fact, networks utlhzmg fixed

R Y

IS D T S

262

to another fixed routing pattern. However, in prac-
tice this would mean that every routine network com-
ponent failure becomes a catastrophe for operational
personnel, every site spending frantic hours manually
reconstructing routing tables.

At their best, in the absence of network compo-
nent failure, fixed routing algorithms are inefficient,
While the routing tables can be fixed to be optimal
for some traffic flow, fixed routing is.inevitably inef-
ficient to the extent that network traffic flows vary
from the optimal traffic flow. Unreliability and inef-
ficiency are also characteristic of two alternative tech-
niques to fixed routing which fall under the heading
of non-adaptive algorithms: fixed routing with fixed
alternate routes and random routing [26].

Non-adaptive algorithms are all extremely simple
and can therefore be implemented at low cost. They
are thus possibly suitable for hardware implementa-
tion, for theoretical analysis, and for studying the
effects of varying other network parameters and
algorithms.

In conclusion, we do not recommend non-adaptive
routing for most networks because it is unreliable and
inefficient. Despite these drawbacks, many networks

have been proposed or begun with non-adaptive rout- .

ing, generally because it is simpler to implement and
to understand. Perhaps this tendency will be reversed
as more information about other routing techniques
is published and ‘as network technology generally
grows more sophisticated.

4.1.2. Centralized adaptive algorithms

In a centralized adaptive algorithm, the nodes send
the information needed to make a routing decision to
a Routing Control Center (RCC) which dictates its
decision back to the nodes for actual use. The advan-
tages claimed for a centralized algorithm are: a) the
routing computation is simpler to understand than a
non-centralized algorithm, and the computation itself
can follow one of several well known algorithms, e.g.
[14]; b) the nodes are relieved of the burden and
overhead of the routing computation; ¢) more nearly
optimal routing is possible because of the sophistica-
tion that is possible in a centralized algorithm; and d)
routing “loops” (a possible temporary property of
distributed algorithms) can be avoided.

Unfortunately, the processor bandwidth utiliza-
tion at the center is likely to be very heavy. The clas-
sical algorithms that a centralized approach might use
generally run in time proportional to N to the third
(where N is the number of nodes in the network),

JM. McQuillan, D.C. Walden

while their distributed counterparts can run (through
parallel execution) in time proportional to N to the
second. While it may be a saving to remove computa-
tion from the nodes, it may not be possible to per-
form a cubic computation on a large network in real
time on a single computer, no matter how powerful ’
[26].

The claim that more optimal routing is possible
with a centralized approach is not true in practice: To
have optimal routing, the input information must be
completely accurate and up-to-date. Of course, with
any realistic centralized algorithm, the input data will
no longer be completely accurate when it arrives at
the center. Similarly, the output data—the routing
decisions—will not go into effect at the nodes until
some time after they have been determined at the
center.

Distributed routing algorithms, whether fixed
random, fixed alternate, or adaptive, may contain
temporary loops, that is, a packet may traverse a
complete. circle while the algorithm adapts to net-
work change. Proponents of centralized routing often
argue that such loops can best be avoided by central-
ization of the computation. However, because of the
time lags cited above, there may indeed be loops
during the time of propagation of a routing update
when some nodes have adopted the new routes and
other nodes have not.

A centralized routing algorithm has several inher-
ent weaknesses in the updating procedure, the first
being unreliability. If the RCC should fail, or the
node to which it is connected goes down, or the lines
around that node fail, or a set of lines and nodes in
the network fail so as to partition the network into
isolated components, then some or all of the nodes in
the network are without-any routing information. Of
course, several steps can be taken to improve on the
simple centralized policy. First, the RCC can have a
backup computer, either doing another task until a
RCC failure, or else on hot standby. This is not
sufficient to meet the problem of network failures,
only local outages, but it is necessary if the RCC com-
puter has any appreciable failure rate. Second, there
can be multiple RCCs in different locations through-
out the network, and again the extra computers can
be in passive or active standby. Here there is the prob-
lem of identifying which center is in control of which
nodes, since the nodes must know to which center to
send their routing input data.

A related difficulty with centralized algorithms lies
in the fact that when a node or line fails in the net-

The ARPA network design decisions

work, the failed component may have been on the
previously best path between the RCC and the nodes
trying to report the failure. In this case, just at the
time the RCC needs routes over which to receive and
transmit routing information, no routes are available;
the availability of new routes requires the very change
the RCC is unsuccessfully attempting to distribute.
Solutions which have been proposed to solve this
“deadlock” are slow, complicated, awkward, and fre-
quently rely on the temporary use of distributed
algorithms [16].

Finally, centralized algorithms can place heavy and
uneven demands on network line bandwidth; near the
RCC there is a concentration of routing information
going to and from the RCC. This heavy line utiliza-
tion near the center means that centralized algorithms
do not grow gracefully with the size of the network
and, indeed, this may place an upper limit on the size
of the network.

4.1.3. Isolated adaptive algorithms

One of the primary characteristics of an isolated
algorithm which attempts to adapt to changing con-
ditions is that it takes on the character of a heuristic
process: it must “learn” and “forget” various facts
about the network environment. While such an
approach may have an intuitive appeal, it can be
shown rather simply that heuristic routing procedures
are unstable and are therefore not of interest for most
practical network applications, The fundamental
problem with isolated adaptive algorithms is that they
must rely on indirect information about network con-
ditions, since each node operates independently and
without direct knowledge of or communication with
the other nodes.

There are two basic approaches to be employed,
separately or in tandem, to the process of learning
and forgetting. We call these approaches positive feed-
back and negative feedback. One way to implement
positive feedback was suggested by Baran as part of
his hot-potato routing doctrine [2]. Each node incre-
ments the handover number in a packet as it forwards
the packet. Then the handover number is used in a
“backwards learning” technique to estimate the
transit time from the current node to the source of
the packet. Clearly, this scheme has drawbacks
because it lacks any direct way of adapting to
changes. If no packets from a given source are routed
through a node by the rest of the network, the node
has no information about which route to choose in
sending a message to that source. In general, as part

263

of a positive feedback loop, the routing algorithm
must periodically try routes other than the current
best ones, since it has no direct way of knowing if
better routes exist. Thus, there must always be some
level of traffic traveling on any route that the nodes
are to learn about, since it is only by feedback from
traffic that they can learn.

The other half of an adaptive isolated algorithm is
the negative feedback cycle. One technique to use
here is to penalize the choice of a given path when a
packet is detected to have returned over the same
path without being delivered to its destination. The
relation of this technique to the exploratory nature
of positive feedback is evident.

An adaptive isolated algorithm, therefore, has this
fundamental weakness: in the attempt to adapt
heuristically, it must oscillate, trying first one path
and then another, even under stable network condi-
tions. This oscillation violates one of the important
goals of any routing algorithm, stability, and it leads
to poor utilization of network resources and slow
response to changing conditions. Incorrect routing of

. the packets during oscillation increases delay and

reduces effective throughput correspondingly. There
is no solution to the problem of oscillation in such
algorithms. If the oscillation is damped to be slow,
then the routing will not adapt quickly to impove-
ments and will therefore declare nodes unreachable
when they are not, with the result that suboptimal
paths will be used for extended periods. If the oscilla-
tion is fast, then suboptimal paths will also be used
much of the time, since the network will be chron-
ically full of traffic going the wrong way.

4.1.4. Distributed adaptive algorithms

In our experience, distributed adaptive algorithms
have none of the inherent limitations of the above
algorithms; e.g., not the inherent unreliability and
inefficiency of non-adaptive algorithms, nor the un-
reliability and size limitations of centralized algo-
rithms, nor the inherent inefficiency and instability
of isolated algorithms. For example, the distributed
adaptive routing algorithm in the ARPA Network has
operated for five years with little difficulty and good
performance. However, distributed algorithms do
have some practical difficulties which must be over-
come in order to obtain good performance.

Consider the following example of a distributed
adaptive algorithm. Each node estimates the “dis-
tance” it expects a packet to have to traverse to reach
each possible destination over each of its output lines.

264

Periodically, it selects the minimum distance estimate
for each destination and passes these estimates to its
immediate neighbors. Each node then constructs its
own routing table by combining its neighbors’ esti-
mates with its own estimates of distance to. each
neighbor. For each destination, the table is then made
to specify that selected output line for which the sum
of the estimated distance to the neighbor plus the
neighbor’s distance estimate to the destination is
smallest.

Such an algorithm can be made to measure dis-
tance in hops (i.e., lines which must be traversed),
delay, or any of a number of other metrics including
excess bandwidth and reliability (of course, for the
latter two, one must maximize rather than minimize).
The above algorithm is representative of a class of
distributed adaptive algorithms which we consider
briefly in the remainder of this section. For simplicity
- of discussion we will assume that distance is measured
in hops.

The first point is that distributed algorithms are
slow in adapting to some kinds of change; in partic-
ular, the algorithm reacts quickly to good news, and
stowly to bad news. If the number of hops to a given
node decreases, the nodes soon all agree on the new,
lower, number. If the hop count increases, the nodes
will not believe the reports of higher counts while
they still have neighbors with the old, lower values.
This is demonstrated in [26]. Another point is that
there is no way for a node to know ahead of time
what the next-best or fall-back path will be in the
event of a failure, or indeed if one exists. In fact,
there must be some finite time, the nétvyork response
time, between the occurrence of a change in the net-
work and the adaptation of the routing algorithm to
that change. This time depends on the size and shape
of the network.

We have come to conclude that the routing algo-
rithm should continue to use the best route to a given
destination, both for updating and forwarding, for
some time period after it gets worse. That is, the
algorithm should report to the adjacent nodes the
current value of the previous best route and use it for
routing packets for a given time interval. We call this
“hold down” [26]. One way to look at this is to
distinguish between changes in the network topology
and traffic that necessitate changing the choice of the
best route, and those changes which merely affect the
characteristics of the route, like hop count, delay,
and throughput. In the case when the identity of the
path remains the same, the mechanism of hold down

J.M. McQuillan, D.C. Walden

provides an instantaneous adaptation to the changes
in the characteristics of the path; certainly, this is
optimal. When the identity of the path must change,
the time to adapt is equal to the absolute minimum
of one network response time, while the other nodes
have a chance to react to the worsening of the best
path and to decide on the next best path. (Please note
that this is a very simplified description of hold
down. A more complete description states in detail
when hold down should be invoked and for what

“duration. Such a description may be found in [26],

and more is being learned [31].)

“The routing algorithm is extremely important to
network reliability, since if it malfunctions the net-
work is useless. Further, a distributed routing algo-
rithm has the property that all the nodes must be per-
forming the routing computation correctly for the
algorithm to be reliable. A local failure can have global
consequences; e.g., one node announcing that it is the
best path to all nodes. Routing messages between
nodes must have checksums and must be discarded if
a checksum error is detected. All routing programs
must be checksummed before every execution to
verify that the code about to be run is correct. The
checksum of the program should include the pre-
liminary checksum computation itself, the routing
program, any constants referenced, and anything else
which could affect its successful execution. Any time
a checksum error is detected in a node, the node
should immediately be stopped from participating in
the routing computation until it is restored to correct
operation again.

4.1.5. Routing processing goals

In this section we outline some of the desirable
characteristics for the processing of routing informa-
tion. There are six divergent goals for the routing
algorithm in its task of accepting the input data about
the network and generating the required output.

Simplicity. Simplicity is the goal we list first,
because it assumes increasing importance as further
requirements are placed on the routing algorithm and
the trend to complexity grows. There are two distinct
kinds of simplicity that are of great value here,and in
any computer algorithm. First, it is almost essential
that the routing program running in a network be
simple enough for a man to understand what is
happening in a given situation. This is desirable not
from the point of view of keeping the man in control,
but merely to permit him to follow the operation of
the algorithm and find problems and suggest improve-

The ARPA network design decisions

ments in its performance. This may sound trivial,
but in a very large network even the most basic mea-
surements and the most elementary observations are
difficult to undertake. Thus it is useful if the routing
algorithm itself does not present further complexities
to the man trying to interpret its behavior. In prac-
tice, it should be possible to understand or predict
the behavior of the routing algorithm without diffic-
ulty. For example, order-dependent or non-deter-
ministic rules may be too obscure to follow, partic-
ularly in a network environment.

The second kind of simplicity that is desirable is
simplicity in the design and structure of the algo-
rithm, so that it can be coded in a small, simple pro-
gram. It is more likely that the program will be effi-
cient and reliable if it can be expressed simply to the
computer. It is always good software design to write
simple programs, and this is especially true in a net-
work environment, where the programs must run con-
tinuously in real time, and run on many computers.

Reliability. 1t is critical that the routing algorithm
be reliable in the face of node and line failures. Such
failures must be expected, and, indeed, when they
occur the successful operation of the routing calcula-
tion is most essential. Therefore, the momentary or
prolonged malfunction of any component in the net-
work should not interfere with the steady, accurate
process of calculating the best routes for traffic in the
network. When parts of the network are isolated from
each other, and when they are reunited, the change-
over should be managed smoothly. If a node fails to
receive one or two routing messages due to line errors
or node problems, or receives extra messages, or
erroneous data, the global reliability of the distrib-
uted computation should not be affected.

Steady state solution. A basic requirement of any
routing algorithm is that, given a static set of inputs,
it should- arrive at a steady state solution which is
accurate and stable. This is a very elementary goal,
but one that should not be overlooked. The operation
of the algorithm should not be so approximate that
its outputs oscillate under static input conditions. For
instance, random or heuristic algorithms are undesira-
ble for this reason. Also, order-dependent algorithms
and techniques with many special cases may not
always arrive at the same solution to a given set of
routing input data with slight changes in the specifica-
tions, Attention t0 this goal is particularly important
in the early stages of designing an algorithm. Then,

~ when test cases are being thought up, it is essential
that the algorithm arrive at an accurate and stable

265

solution for all the simple static tests that can be
devised.

This means, for instance, that in thinking about
algorithms that should work for a network with a
connectivity that is assumed to change, one should
test the algorithm on the following kinds of net-

~works:

single node

loop networks

star networks

tree networks

union of a loop and a tree
union of two loops
series-parallel combinations

and so on. The algorithm should also be tested with
various traffic requirements, such as:

no traffic

one-way traffic along a single path
two-way traffic along a single path

two traffic streams on separate paths

two traffic streams with a line in common

and so on. Solving the routing problem for a static
situation is much easier than for a dynamically chang-
ing one. It is also much easier to verify that the rout-
ing actually performs as desired.

Adaptation to change. In a real network, of
course, the determination of the output data outlined
above is not a one-time calculation. As we have
pointed out, the routing algorithm must run continu-
ously, and its input data may change at any time.
This leads us to the next requirement, that the algo-
rithm be quickly adaptive to changes in network
topology and traffic patterns. This point is of central
importance, since routing for fixed inputs is a trivial
problem by comparison. The computation to deter-
mine whether any paths exist between a pair of nodes
must be sensitive to changes in the configuration of
the network. The circuits and nodes in the network
may fail, isolating some nodes from others, or there
may be an alternate path remaining to connect them.
That is, traffic should be routed around broken lines
and nodes as long as any path exists to the desired
destination. This may even require that a packet be
returned over a path it has already traveled. For
instance, consider a packet going the short way
around a circle from its source to its destination when
a line in the path ahead breaks. The packet should
turn around and go back the other way around the
circle. Similarly, circuits and nodes may be added to

266

the network, and an adaptive routing algorithm has
the advantage that these changes may happen
smoothly and without any human intervention in the
operation of the network. The algorithm must also be
sensitive to changing traffic levels and patterns, since
these will affect the computation of the paths of low
delay and high capacity.

Adaptation to change—priority of routing. One im-
portant aspect of the requirement that a routing algo-
rithm be adaptive to changing network conditions is
that it implies a priority structure to the task proces-
sing in the node computer. Routing must always have
higher priority than packet processing because it may
be essential to change the routes being used to some
new routes, especially at moments of high traffic
load. If routing cannot be recomputed because of
higher priority tasks, then the network performance
will degrade significantly as congestion sets in due to
out-of-date routing information. In practice, this
means that:

1. The input of routing messages must always be
possible,

a. Storage must be reserved for the messages (a
reserve of the common free list is necessary since the
node cannot know ahead of input time whether the
next input will be a packet or a routing message).

b. The input process must be able to run often so
that messages are not lost.

2. The output of routing messages must always be
possible.

a. Storage must be reserved for the messages (this
can be dedicated fixed table storage). '

b. The output process must be able to run often
enough to send routing messages as required, and
they should have higher priority than any other trans-
mission.

3. The routing update computation must always
be possible.

a. Storage must be reserved for the routing update

* (this also can be dedicated tables).

b. The updating process must be able to run
periodically, either on a clock interrupt or called by
the input and output ‘processes which have been
guaranteed to run frequently enough.

Adaptation to change—speed. Given that the rout-

-ing algorithm is adaptive to changes in the network,
there are fur’gher desirable characteristics we can list.
It should adapt as quickly as possible. Once the pat-
tern -of traffic has changed in the network, the old
paths may become suboptimal, and perhaps even
COunter-prodLictive, interfering with - other useful

J.M. McQuillan, D.C. Walden

traffic. The nodes should decide quickly and in-a har-
monious, cooperative manner how to use the
resources of the network. When the routing algorithm
must adapt, it should do so smoothly, without oscilla-
tion, and without creating undue conflicts in other
parts of the network.

Global optimality. There are other goals in addi-
tion to the local choice of paths of low delay and
high throughput. It is important that the routing algo-
rithm meet certain global requirements as well. For
instance, the algorithm should lead the nodes in the
network to a global optimum in utilizing shared
resources. It is not enough for an individual node to
find a good path to another node, it must do so in the
light of the needs of other nodes in the network. It is
possible to think up routing algorithms which stabi-
lize at several operating points in a given situation,
and only one of them is the global best use of
resources. A good routing algorithm routes high band-
width traffic to achieve the maximum global flow.
Suppose, as in fig. 8, it is desired to send 50 kilobits/
second of traffic from node 1 to node 4 and at the
same time it is desired to send 50 kilobits/second
from node 6 to node 5. If the traffic from 6 to 5 as
well as the traffic from 1 to 4 must pass over the link
from 6 to 5, the global flow is 50 kilobits/second. If,
however, either the traffic from 1 to 4 or the traffic
from 6 to 5 were to go around the other way via the
link from 2 to 3, the global flow would be 100 kilo-
bits/second which is the maximum global flow under
the desired traffic inputs. Of course, it is clearly best
for the 1 to 4 traffic to go via the link from 2 to 3
since that also minimizes the global delay.

Fairness. This suggests that the algorithm should
be fair to competition for shared resources. While
fairness can sometimes be quantified, it is often a sub-
jective judgment, but it is vital that the routing algo-
rithm operating at one node does not prevent another
node from gaining a share of network services. Con-
sider fig. 9, in which it is desired to send 1 unit of

(4 all lines 50 Kbs

50 Kbs
to 5

Fig. 8. Global optimum traffic flow.

The ARPA network design decisions

g L?o T g lfo 2 g lfo N

1 2 N

to O

Fig. 9. Fairness.

traffic from node O to node 0', from 1 to 1’, from 2
to 2', and so on. Clearly the maximal global flow is
attained under this desired loading by stopping all
traffic from 0 to 0’ since any traffic from O to 0’
reduces the global flow. But this maximum flow
assignment is unfair. Let f be the flow from 0 to 0’
and g be the flow from i to i’ for i equals 1 to N. Then
f+tg<1.

TF = Total flow = f + Nxg,
Max TF [f=0,g=1] =N,
MinTf [f=1,g=0] =1.

Fairness demands that O be able to get some traffic to
0, even if it decreases the global flow. It might be

considered fair to give all nodes an equal share of the

available bandwidth, or to allocate bandwidth to each
node in proportion to demand or to available capa-
city. For instance, one assignment which is certainly
fairer than f=0,g =1 is:

=3 ¢=5 TF=j(V+ D).
A different approach is:
f=UN,g=(N—1)/N; TF=N — 1+ (1/N)

which is quite close to the maximum flow for large V.
Each definition of “fair’ has some merits and draw-
backs, but the important point is that the routing
algorithm should be designed to adhere to some fair-
ness doctrine, or else some traffic will be locked out.

4.1.6. Routing performance measures

In this section, we will take up the question of
how to evaluate the performance of a routing algo-
rithm. We will use the four basic factors underlying

267

1. ‘How Routing Affects These Goals
2. The Appropriate Metric for Evaluation

High Throughput
fraction of total
bandwidth obtained

Low Delay

ave. round trip delay

High Reliability
% time disconnected

Low Cost
$ / month membership

$/ bit or message % messages undelivered

Fig. 10, Routing performance measures.

the performance of the network as a whole in con-
sidering the routing-algorithm. The two central con-
cerns are pictured in fig. 10.

Delay. As we indicated in the section above on
network delays, the most important point about
delay usually is that interactive traffic experience the
minimum delay possible, although sometimes’ uni-
formity of delay is important. Apart from general
considerations such as giving such traffic higher prior-
itly than bulk traffic, what effect can routing have on
delay performance? One way to answer this question
is to review the components of delay introduced
above, and to note what action the routing algorithm
can take with regard to each. Before giving this list, it
should be noted that the actual values of the variables
in question here may vary enormously from one net-
work to another, and within a given network. There-
fore, some of the considerations will certainly out-
weigh others. '

1. Propagation delays. The routing algorithm may
keep track of the speed-of-light delays in.the net-
work, which may vary significantly if there are some
long lines, and. certainly if there are satellite links.
Although these delays are fixed and beyond the con-
trol of the algorithm, it can choose paths with the
least propagation delay.

2. Transmission delays. The routing algorithm may
also keep track of the bandwidth of the circuits in the
network, to know the transmission delays that
packets will experience. Again, these delays are not
likely to be dynamic, but the routing computation
can use fast lines and avoid slow lines where possible.

3. Nodal processing delays. Here delay is more
likely to have a large dynamic range. Some nodes may
have different traffic loads than others by several
orders of magnitude, and the nodes themselves may
have different capacities, so the input queueing delays
for processing service may vary. If this component

268

can be significant, the routing algorithm should moni-
tor the values for processing delays at the nodes.

4. Queueing delay. The case of queueing delays on
circuits is similar. There will most certainly be some
lines which are loaded more heavily than others, and
the queueing delays are inversely proportional to line
bandwidth, so long queues on slow lines lead to very
long delays. In both of these cases, not only can the
routing algorithm avoid long delays by choosing alter-
nate routes, but it is also the major determinant of

processing and queueing delays. That is, the routing

algorithm may be structured to sense the buildup of
these delays and change the routes being used accord-
ingly, explicitly to reduce the load on individual
nodes or lines.

5. Retransmission delays. This case is somewhat
similar as well. The routing algorithm should adapt to
any sizable number of retransmissions on any circuit,
since they affect many of the other variables. By
reducing the effective bandwidth of the circuit,
retransmissions increase the processing and queueing
delay for a given circuit is not strictly constant. This
is especially true for satellite links used in broadcast
mode.

Throughput. The next topic we will examine is
that of network throughput as related to routing. We
have stated that the important goal here is that large
data tranfers, as opposed to interactive traffic, gain
high throughput. A list similar to that for delay can
be proposed; these are issues which may be important
for the achievement of high throughput, depending
on the kind of network considered:

1. Circuit bandwidth. The routing algorithm must
ascertain the effective bandwidth of the circuits in
the paths that it chooses for high throughput traffic.
This includes such effects as the use of the line by
other nodes, the deterioration due to retransmissions,
and so on. It is clear that in this regard the routing
program is capable of much more than a passive mea-
surement role. Since it is routing which determines at
each node how much traffic to send over a particular
line, it is possible to regulate the flow over high
throughput paths if desired. It is even possible, in
order to provide as high a utilization rate as possible,
to ensure that all traffic is long packets and messages,
although sending all interactive traffic by other routes
may penalize that traffic in terms of delays.

2. Node bandwidth. The same comments apply to
node bandwidth.

3. Buffering. We will assume that routing and flow
control are different operations and are unrelated.

J.M. McQuillan, D.C. Walden

Thus, the routing program need not be concerned
with the existence of buffering at any level in the net-
work.,

4. Multiple paths. We have already mentioned the
necessity for load-splitting in certain network situa-
tions. It is likely to be much more relevant for high-
throughput applications than for low-delay traffic,
but the technique of using many paths to a destina-
tion is of fundamental importance.

Cost. We now turn to a consideration of the rela-
tionship between routing and network cost. There are
3 basic network resources which the routing -algo-
rithm utilizes, and it can take several actions to utilize
them effectively:

1. Line bandwidth. A primary consideration here
is that the routing algorithm elect the paths with the
fewest intermediate nodes, thus minimizing the total
line bandwidth utilization. This is an important argu-
ment, and the basis for several algorithms based on
shortest path routing. We should note that this goal
may be in direct conflict with the goals of low delay
and high throughput, though there are often cases,
particularly in networks with uniform node and line
characteristics, when shortest path routing is an excel-
lent policy.

2. Node bandwidth. A second cost factor, similar
to the first, is node bandwidth. Again, the routing
algorithm which chooses short paths over long ones is
at an advantage here. In both cases, the routing pro-
gram would do well to seek underutilized resources
rather than concentrating traffic on a few paths.

3. Node storage. The final cost factor is node
storage, a specific instance of the higher cost of con-
centrated traffic. The routing algorithm has the
capability of keeping the network queues as short as
possible if that is a specific objective. Avoiding the
inefficient use of storage in overlong queues may also
tend to defer problems of congestion, which also
make the network efficiency suboptimal.

A different cost consideration is that of network

“connectivity. Here too, the routing algorithm is an

important factor in determining cost, though in a -
more indirect fashion. The cost of connecting the net-
work is related to how adaptive the routing proce-
dures are in practice. For instance, some networks
have been proposed with fixed routing matrices giving
two alternate routes to each node. In this kind of a
network, it is essential to provide enough connec-
tivity so that nodes are seldom declared unreachable
by the routing algorithm (this may happen even
though a network path exists between them). Of

The ARPA network design decisions

course, this raises the cost of the network. A similar
problem holds for routing algorithms which adapt
slowly, or only with human intervention, or only
with some given probability of accuracy, and so on.
When we discuss area routing later in Section 4, it will
be clear that the problem of rapid and accurate deter-
mination of reachability is an important and difficult
problem in networks with hundreds of nodes or
more. '

Reliability. The last performance measure we will
discuss is network reliability. Routing can have
several different kinds of effects on reliability. In
terms of network use, the important measure is the
fraction of messages which are undelivered due to
failures in the communications subnetwork. The rout-
ing program has as its main function in the network
the efficient and reliable delivery of messages to their
destinations. Despite all kinds of component failures,
from lines to nodes to Hosts, the routing algorithm
should continue to deliver messages properly or

report that they are undeliverable because the .

destination is unreachable or not functioning.

The parallel requirement concerning the reliability
of network connectivity has been examined in the
section above on network cost. The appropriate mea-
sure here is the fraction of the time that the routing
algorithm is in error concerning the reachability of
some node. ~

A different set of issues arises in the relationship
between the routing program itself and network reli-
ability. Given the central role of the routing process
in any network, it is particularly important that rout-
ing never break down altogether, the way most sys-
tems, software and hardware, eventually do. The
reason is clear: if the routing in the network is incor-
rect or nonfunctioning, the network is completely un-
usable. This means that a different measure of routing
performance is the percentage of network unavailabil-
ity that is due to routing algorithm failures. In sum-
mary, the routing program must also be considered as
another module of network software,. with some
given level of reliability, which is more sensitive in
terms of network reliability than most other modules,
because of its global impact.

4.1.7. Routing cost measures

There are five basic costs involved in the continu-
ous operation of a routing algorithm, and they are
listed in fig. 11. All these factors act to reduce the
effective capabilities of the nodes and lines in the net-
work with regard to the processing of data packets. In

269

Nodal Bandwidth Line Bandwidth

bits /sec/node bits /sec/line
Nodai Delay Line Delay
sec/node sec/line

Nodal Storage
bits /node
Fig. 11. Routing costs.

other words, these costs are various kinds of network
system overhead. First, there is the CPU utilization at
each node in the network needed to perform the cal-
culation of the new best routes to all destinations.
Second, there is the delay at each node associated
with the processing of the routing information, intro-
ducing delays in the processing of packets. Third,
there is the strorage needed at each node as a data
base for the routing calculation, and for the exchange
of routing information with other nodes. Fourth,
there is the line bandwidth used for the exchange of
routing information between nodes. Finally, there is
the line delay caused by the fact that sometimes a
routing message is being transmitted at a time when a
data packet is queued. We will now consider each of
these costs in more detail.

Line bandwidth. The first cost factor to consider is
the fraction of the available line bandwidth needed to
exchange routing messages between nodes. Clearly,
this bandwidth is a function of the size of the routing
message and its frequency as previously stated in sec-
tion 2.2.2:

BWC, = B,#F,.

Depending on the algorithm, one may choose also to
make the bandwidth used for routing a fixed number
of bits per second, regardless of available line band-
width, or one may wish to keep the bandwidth used
for routing below some acceptable overhead fraction
of the line bandwidth. Thus, on slow lines, routing
would be sent less often or in an abbreviated form.
One may also choose different priority strategies for
the transmission of routing. As we have pointed out,
routing messages are very important, and should
probably take precedence over most other traffic.
However, it may be desirable to specify that some
classes of transmission take priority over routing mes-
sages. In this way, the routing messages need not
introduce added delays to special high-priority mes-
sages, though they still represent a reduction in the

270

effective bandwidth of the communications circuits.

Line delay. Next we examine the added delays on
circuits caused by the transmission of routing mes-
sages. Consider a single line with one routing message
of length B, sent with frequency F, per second, and a
very light data traffic load. Then the probability of a
data packet having to wait is the ratio of the time
duration in which routing is being sent to the routing
period. For a given circuit bandwidth BWC, this prob-
ability of line delay is:

BWC,/BWC = B«F /BWC.

Given that a packet must wait, the average wait is half
the maximum, or

ALD = B,/(2+BWC).
The expected line delay is the product of the prob-

J.M. McQuillan, D.C. Walden

ability of line delay and the average line delay:
ELD = (BWC,/BWC)*ALD,
That is,

" ELD = (B#B,+F,)/(2+BWC*BWC).

This means that the delay to packets due to fouting)
messages-increases as follows:

linearly with increasing routing frequency,
quadratically with increasing routing message length,
quadratically with decreasing line bandwidth.

The situation is depicted for several representative
values of the parameters in fig. 12.

The reason that the analysis presented above is
valid only for light traffic loads is that a queueing
phenomenon causes total network delay to increase

8 IR ERAEL 1 TTT1TIT IR IR ARAL L L
2~ / -
10 ‘- ‘/\\ -
— 96K B 3
sf- Os J
" %]
~ s,
s ¢ ’ s’ %]
L o%q." IP/O
Z & 50Kbs
E ’

Lt

/

T TTTTIM

EXPECTED PACKET DELAY
o

)
1
g
&
N
4

N

\\-‘/
o
b

z/
(-4

1L

1

y
e
001 4 -
= % Jid s =
s \ i
2 -
0.001 Lo1iliy Lol il L1t L1
5 ol 2 5 1 2 s o 2 S o 2 s

FREQUENCY OF ROUTING (MESSAGES/sec)

Fig. 12. Expected packet delays due to routing messages.

The ARPA network design decisions

without

routing
fotal delay
with routing

Delay

"light load”
. . .

additional delay
due to routing messages

)
100%
Load

Fig. 13. Delay due to routing vs. traffic load.

nonlinearly with load. Therefore, the added traffic
due to the presence of routing messages has a corre-
spondingly greater effect in terms of delay at high
loads, as shown in fig. 13.

Nodal bandwidth. The calculation of the best
routes to all destinations represents a steady, periodic
demand for CPU processing time. One can view the
computation as a certain percentage of overhead in
the CPU bandwidth available for message processing.
We have called this factor BWP,, the fraction of the
bandwidth of the processor used for routing. In
general, it has two components, one based on the
time taken to process routing messages on each line,
and the other a simple periodic component:

BWP, = NLN+P#F + P,,

where NLN is the number of lines per node, P, is the
processor time for routing messages, F; is the fre-
quency of routing messages, and Py, is the fractional
overhead of processor time for periodic processing of
routing. For instance, if NLN =2, F, =5 messages/
sec, and Py = 1%, then BWP, = 3%. If BWP, becomes
too large, the processor becomes much less cost-effec-
tive in its primary role as message processor. There-
fore, a major cost consideration in evaluating a rout-
ing algorithm is the number of CPU cycles per second
it requires in each node of the network.

Nodal delay. Along with the reduction in effective
nodal processing power comes the effect of delays in
the processing of packets while the routing computa-
tion is proceeding, given that it takes priority over
data processing. Suppose one routing message is
received from each of NLN adjacent nodes with fre-
quency F}-messages per second. Then, given the time
P, and the fractional time P, above, there are three

271

cases to consider for nodal delay:
1. NLN=#PxF, > Py, message processing dominates;
2. NLN#Pp[< Py, periodic processing dominates;
3. NLN=PF, = Py, factors have equal magnitude.
If we assume that NLN*P#F,. <1 (= total processor
bandwidth), and that packet processing time is infi-
nitesimal, we can analyze each of these cases:
1. The probability that a packet has to wait is

NLN#F P,

and if it must wait for only one message, it experi-
ences an average wait of

P
This means that the expected delay is
ANLN=F#P#P,

which is a lower bound on the actual value. It can be
shown with a more detailed analysis that this is the
expected value for delay under the condition that
1/(FyxP.)> NLN, which means that there are many
more time periods in which the processor is able to
process routing inputs than there are adjacent nodes
to send the routing. In practice, this is the only
assumption that makes sense, since otherwise BWP,
becomes close to unity, and there is no bandwidth
available for data traffic.

2. This case can be analyzed as line delay was
analyzed above, based on the length and frequency of
the periodic processing, Py,. ’

3. This case can be analyzed on the basis of the
first two cases, summing the effects of each of the
terms.

Nodal storage. The final cost factor we will discuss
is the storage required at each node to maintain the
routing information. This cost may vary greatly
among various algorithms, depending on how much
information is needed in the routing computation,
and also on the method of exchanging routing mes-
sages. The node must save the incoming routing infor-
mation in some fashion, then the routing computa-
tion may generate other, new information, and the
transmission of routing messages to the adjacent
nodes may call for still more storage for data. In a
small communications processor, memory is dedi-
cated to a fairly small program, and message buffers.
Any storage used for the routing calculation must be
taken from the message buffer pool, either once and
for all at design time, or dynamically. Therefore, the
storage requirements of the routing algorithm repre-
sent still another overhead factor.

272

4.1.8. The ARPA network routing algorithm

In this section we describe the routing algorithm
originally installed in the ARPA Network, and
examine it from the point of view of the performance
and cost criteria outlined above.

The ARPA Network algorithm can be summarized
as follows. This algorithm directs each packet to its
destination along a path for which the total estimated
transit time is smallest. This path is not determined in
advance. Instead, each IMP individually decides which
line to use in transmitting a packet addressed to
another destination. This selection is made by a
simple table lookup procedure. For each possible
destination, an entry in the routing table designates
the appropriate next line in the path.

Each IMP maintains a network delay table which
gives an estimate of the delay it expects a packet to
encounter .in reaching every possible destination over
each of its output lines. This table and other tables
mentioned below are shown in fig. 14 as kept by IMP
2, for example. Thus, the delay from IMP 2 to IMP 5
using line 3 is found to be 4 in the Network Delay
Table. Periodically, every % of a second, the IMP
selects the minimum delay to each destination and
puts it in the minimum delay table. It also notes the
line giving the minimum delay and keeps the number
of the line in a table for use in routing packets. Also
every %of a second, the IMP passes its minimum
delay table to each of its immediate neighbors, that
is, it sends the minimum delay table out each of its
phone lines. Of course, before the minimum delay
table is transmitted to the neighboring IMPs, the IMP
sets the minimum delay to itself to zero.

MINIMUM DELAY TABLE

[6]o]6]5] 4]] J18] — SEND To EACH NEIGHBOR
4

: A0D E1s
e 2 R,
54 5]
1114] 6| 712] s 21| <— RECEIVE
une2[slsl7]s5]s 18] «<— FrROM
sle|7[e[s8]4 19| <— NEIGHBORS

NETWORK DELAY TABLE "

aTimez> _

Glols[=ls 1 I]

ROUTING TABLE

Fig. 14. The ARPA network routing tables.

J.M. McQuillan, D.C. Walden

Since all of the neighbors of an IMP are also send-
ing out their minimum delay table every % second,
with their own entry set to zero, an IMP receives a
minimum delay table from each of its neighbors every
% second. These tables are read in.over the rows of the
delay table as they arrive. The row to be written over
is the row corresponding to the phone line that the
arriving minimum delay table came in over. After all
the neighbors’ estimates have arrived, the IMP adds
the delay saved by the IMP itself to the neighbors’
estimates. This is done by adding the IMP delay table,
i.e., the contribution of this IMP to the total delay to
each destination, to each column of the delay table.
Thus the IMP has an estimate of the total delay to
each destination over the best path to that destina-
tion.

In parallel with this computation, the IMPs also
compute and propagate shortest path information in
a similar fashion. This information is used only in the
determination of connectivity. An upper limit of the
number of lines in the longest path in the network is
used as the cut-off for disconnected or nonexistent
nodes. ‘

Now let us consider the performance of this algo-
rithm. First of all, it explicitly determines the connec-
tivity of the network, since all IMPs are continuously
exchanging the length of the shortest path from each
IMP to each other IMP. Information travels at
roughly % of a second per line, so that changes in
topology are recognized by the whole network in a
matter of a few seconds. This figure is probably
acceptable if one assumes that the network connec-
tivity does not change too often. Second, the algo-
rithm also explicitly calculates the path of least delay.
However, here the approximations due to the low fre-
quency of routing update mean that the delay for
traffic at one instant is a function of the traffic of
several seconds before. This could potentially lead to
oscillations and poor line utilization. The ARPA Net-
work algorithm attempts to head off this class of
problems by biasing delay heavily toward the shortest
path. That is, delay is measured by the number of
packets on an output queue, plus a fixed increment,
so that even an empty queue represents additional
delay.

The algorithm has several faults, some of which are
relatively simple to cure, and others which are more
fundamental in nature. The strong bias in the algo-
rithm towards the shortest path is basically a good
idea, and leads to stable flows near optimum values.
However, the bias makes the algorithm somewhat

The ARPA network design decisions

insensitive 'to changes in traffic patterns, so that
global optimization of delay and throughput is not
likely as network loading increases. A second fault is
that the algorithm only maintains one route per
destination, updated every % second. This means that
no load-splitting is possible, at least not on a short
term basis. The algorithm could be modified to use
one of several routes to each destination, with
weights assigned to each. Further, the algorithm
might maintain additional data on the loading of the
various paths, to facilitate more rapid adaptation to
changes in traffic. This change, combined with the
expansion to several routes, might also lead to
smoother and more uniform adaptation.

The ARPA Network routing algorithm is quite a
good design in many respects. Perhaps its strongest
point is that it is simple. The IMP does not have to
know the topology of the network, or even the
identity of its neighbors. When IMPs and lines go
down, the algorithm functions as usual, and the new
routing information propagates through the network
by a process of exchanges between neighbors. There-
fore, the algorithm scores quite well in reliability.
Although there are no explicit controls to ensure fair-
ness to competition, the algorithm does relatively
well in this category as well.

Finally, the algorithm is not a costly one in terms
of the measures discussed above. The program in the
IMP picks the minimum delay and hop counts from
the routing messages received from each neighbor, for
all destinations. Thus, the calculation is proportional
to the number of IMPs in the network, and the num-
ber of lines connected to each IMP. The routing com-
putation takes up about 5% of the CPU bandwidth of
the IMP. The delay and hop information is packed
into a single 16-bit word, so that the routing message
sent out each line consists of 64 words, one for each
IMP in the network, plus some header information.
This amounts to less than 2% of the bandwidth of a
50Kbs line.. At these low bandwidth rates, added
node delays and line delays are not appreciable. In
addition to the storage required for sending the rout-
ing message out each line (one copy of the message is
shared by all lines), the IMP reserves storage for
receiving routing messages from each of its lines.
These tables, together with its own directory of the
best line to each destination, amount to about 3% of
the core storage on an IMP. In summary, the IMP
routing algorithm is a simple, inexpensive algorithm
which performs well in steady state, and in reacting
to small changes in traffic.

273
4.2. Node-to-node transmission procedures

In this section we discuss some of the issues in
designing node-to-node transmission procedures, that
is, the packet processing algorithms. We touch on
these points only briefly since many of them are
simple or have been discussed previously. Note that
many of these issues occur again in the discussion of
source-to-destination transmission procedures.

4.2.1. Buffering and pipelining

As we noted in discussing memory requirements,
the amount of node-to-node packet buffering needs
to equal the product of the circuit rate times the
expected acknowledgment delay in order to get full
line utilization. It may also be efficient to provide a
small amount of additional buffering to deal with
statistical fluctuations in the arrival rates, i.e., to pro-
vide queueing. These requirements imply that the
nodes must do bookkeeping about multiple packets,
which raises the several issues discussed next.

4.2.2, Error control

We have discussed many of the aspects of node-to-
node error control above: the need for a packet
checksum, its size, the basis of the acknowledgment/
retransmission system, the decision on whether the
line is usable, and so on. These procedures are critical
for network reliability, and they should therefore run
smoothly in the face of any kind of node or circuit
failure. Where possible, the procedures should be self-
synchronizing; at least they should be free from dead-
lock and easy to resynchronize [24].

4.2.3. Storage allocation and flow control

Storage allocation can be fairly simple for the
packet processing algorithms. The sender must hold a
copy of the packet until it receives an acknowledg-
ment; the receiver can accept the packet if it is with-
out error and there is an available buffer. The receiver
should not use the last free buffer in memory, since
that would cut off the flow of control information
such as routing and acknowledgments. In accepting
too many packets, there is also the chance of a
storage-based deadlock in which two nodes are trying
to send to each other and have no more room to
accept packets. This is explained fully in [19].

The above implies that the flow control proce-
dures can also be fairly simple. The need to buffer a
circuit can be expressed.as a quantitative limit of a
certain number of packets. Therefore, the node can

274

. apply a cut-off test per line as its flow control
throttle. More stringent rules can be used, but may be
unnecessary.

4.2.4. Priority

The issue of priority in packet processing is quite
important for network performance. First of all, the
concept of two or more priority levels for packets is
useful in decreasing queueing delay for important
traffic, Beyond this, however, careful attention must
be paid to other kinds of transmissions. Routing mes-
sages should go with the highest priority, followed by
acknowledgments (which can also be piggy-backed
in packets). Packet retransmissions must be sent with
the next highest priority, higher than that for first
transmission of packets. If this priority is not ob-
served, retransmissions can be locked out indefinitely.
The question of preemptive priority (i.e., stopping a
packet in mid-transmission to start a higher priority
one) is one of a direct tradeoff of bandwidth against
delay since circuit bandwidth is wasted by each pre-
emption. ‘

4.2.5. Packet size

There has been much thought given in the packet-
switching community to the proper size for packets.
Large packets have a lower probability of successful
transmission over an error-prone telephone line (and
this. drives the packet size down), while overhead con-
siderations (longer packets have a lower percentage
overhead) drive packet size up. The delay-lowering
effects of pipelining become more pronounced as
packet size decreases, generally impkroving store-and-
forward delay characteristics; further, decreasing
packet size decreases, generally improving store-and-
because they are waiting behind full length packets.
However, as the packet size goes down, potential
effective throughput also goes down due to overhead.
Metcalfe has previously commented on some of these
points [28].

Kleinrock and Naylor [23] recently suggested that
the ARPA Network packet size was suboptimal and
should perhaps be reduced from about 1000 bits to
250 bits. This was based on optimization of node buf-
fer utilization for the observed traffic mix in the net-
work, However, in [10], we point out that the rela-
tive cost of node buffer storage vs. circuits is possibly

such that one should not try to optimize node buffer -

storage. The true tradeoff which governs packet size

might well be efficient use of phone line bandwidth -

(driving packet size larger). vs. delay characteristics

J.M. McQuillan, D.C. Walden

(driving packet size smaller). If buffer storage is limit-
ing, one should just buy more (up to the limits of the
address space, of course). Further, it is probably true
that if one is trying for high bandwidth utilization,
buffer size- must be large. That is, high bandwidth
utilization probably implies the use of large packets,
which implies full buffers; when idle, the buffer size
does not matter.

As noted above, the choice of packet size is
influericed by many factors. Since some of the factors
are inherently in conflict, an optimum is difficult to
define, much less find. The current ARPA Network
packet size of about 1000 bits is a good compromise.
Other packet sizes (e.g., the 2000 bits used in sev-
eral other networks) may also be acceptable.
However, note that a 2000-bit- packet size generally
means a factor of two increase in delay over a 1000-
bit packet size, because even high priority short
packets will be delayed behind normal longy packets
which are in transmission at each node. The use of
preemptive . priority might make longer packet sizes
efficient.

- Davies and Barber [12] have been cited as recom-
mending a minimum length “packet” of about 2000
bits because they have concluded that most of the
messages currently exchanged within banks and air-
lines fit nicely in one packet of this size. To clarify
this point, we note that they use the term ‘“‘packet™
for the unit of information we call a “message” and
thus are not actually addressing the issue of packet
size. We discuss message size below.

4.2.6. The ARPA Network IMP-to-IMP transmission
control procedure

We now take a close look: at the algorithm used in
the ARPA Network for IMP-to-IMP transmission con-
trol. As has been noted elsewhere, the inter-IMP
modem interface hardware has the capability of
generating checksums for outgoing packets and
checking the checksums on incoming packets. This
allows packets which are damaged in transmission to
be detected and discarded without acknowledgment.
Packets correctly received are acknowledged. A good
IMP-to-IMP transmission control algorithm must
detect errors, acknowledge good transmissions, and
provide retransmission in the event of errors. In addi-
tion, the IMP-to-IMP transmission control algorithm
is-improved if it detects duplicates that are sometimes
generated by retransmission. An algorithm which per-
forms all four of these tasks is described below (it is
like the HDLC data communications standard with a

TR A R

The ARPA network design decisions

1-bit sequence number per logical channel and up to
8 logical channels). '

A number of logical “channels” are maintained
between -each pair of IMPs. Consider only one
channel to begin with, and further consider packet
transmissions in only one direction on this channel.
Of course, acknowledgments go the other direction
on the channel. At both the transmit and receive end
of this channel a one bit sequence number is kept. We
call this bit an odd/even bit. Both transmit and
receive odd/even bits are initialized to be zero. Also,
at the transmit end, a used/unused bit is kept for the
channel. It is of course initialized to zero, meaning
unused. When it is time to transmit a packet, a check
is first made for the channel’s being unused. If it was
previously unused, it is marked as used and the
packet is transmitted. The state of the transmit odd/
even bit is included with the packet. When the packet
arrives at the receiver, assuming the packet is received
correctly, the packet’s odd/even bit is checked against
the receive odd/even bit. If they match, the packet is
accepted and the receive odd/even bit is comple-
mented. Otherwise, the packet would be ignored. In
any case the receive odd/even bit is returned as an
acknowledgment. At the transmitter, if the acknowl-
edgment bit does not match the transmit odd/even
bit, the packet has been successfully sent and
acknowledged and the packet can be discarded, the
channel marked unused, and the transmit odd/even
bit complemented. Otherwise the acknowledgment is
a duplicate and is ignored. Suppose now a second
copy of the packet arrives at the receiver, a packet
which was sent before the first acknowledgment had
a chance to get back to the transmitter. When this
packet arrives at the receiver, its odd/even bit does
not match the receive odd/even bit and so that packet
is discarded as a duplicate, Nonetheless, an acknowl-
edgment is sent for the packet using the present state
of the receive odd/even bit. When the acknowledg-
ment gets to the transmitter, it does match the trans-
mit odd/even bit, so the acknowledgment is a dupli-
cate and is ignored.

The acknowledgment bit is the state of the receive
odd/even bit after it is complemented rather than
before it is complemented. Hence the need for the
“not match” rule when the acknowledgment arrives
at the transmitter. A closely related algorithm was
reported in [4].

Because of the potentially long distances between
IMPs, one channel is not enough to keep the inter-
IMP lines fully loaded. Therefore, eight logical chan-

275

nels are supplied between each pair of IMPs (32 are
supplied between Satellite IMPs). It is not necessary
to maintain ordering of IMP-to-IMP transmissions
since packet ordering is performed at the destination
IMP. This means that the transmit channels can be
filled in any convenient order, and at the receive side,
packets can be forwarded onwards as soon as they are
correctly received regardless of the channel over
which they arrived.

To avoid requiring separate packets for acknowl-
edgments, acknowledgment bits are “piggy-backed”
in packets going the other way on the line. In fact, all
eight receive odd/even bits are transmitted with every
packet going the other way. In the absence of any
traffic going the other way on the line, a packet
carrying only the eight acknowledgments is sent. In
either case, the acknowledgments get back to the
transmitter as fast as possible. Therefore, the trans-
mitter knows very soon whether a packet requires
retransmission or not, allowing the use of a minimal
timeout before retransmission. “Piggy-backing” afl
acknowledgments into every packet going the other
way saves program bandwidth, line bandwidth, and
buffer space over a system which sends individual
acknowledgments in individual packets.

In view of the use of a number of channels and the
delay encountered on long lines, some packets might
have to wait an inordinately long time for transmis-
sion. Traffic that is essentially interactive should not
be subjected to waiting for several thousand-bit
packets to be transmitted, multiplying by ten or
more the effective delay seen by the source. There-
fore, the IMPs maintain two sets of queues for each
output line, and service all priority transmissions
before any regular transmissions. Preemptive priority
is'not employed.

4.2.7. Details of the inter-IMP packet format

Fig. 15 shows the format of packets as they appear
on the inter-IMP circuits. Packets are permitted to be
variable length up to a maximum of about 1000 bits.
The IMP’s modem interface transmission hardware
adds framing characters to each packet as it is trans-
mitted onto an inter-IMP circuit. At the front of the
packet two characters (DLE and STX) are added
indicating the beginning of the packet. At the end of
the packet two characters (DLE and ETX) are added
indicating the end of the packet. The checksum is
appended after the end of packet characters. The
IMP’s modem interface reception hardware has the
capability of detecting the start and the end of a

276 J.M. McQuillan, D.C. Walden
START END FRAMING ERROR
FRAMING CONTROL
0 E
HEADER TEYX T LT
— N J YeHeck cHARACTERS
__HARDWARE _/ I SOFTWARE > HARDWARE
GENERATED GENERATED Ny T GENERATED ™
~
EIGHT BIT ~
/ CHARACTER ~
~
/ ~
~
/ ~
> ~
/ [CHANNEL NUMBER [PACKET NUMBER \\
T T 4
oesTINA| | A /TH] source U
A Eoee" | Messace §iTION H LINK % §
BITS |NUMBER 1 |si me A0S IMP 0
T! T! E
L quaorant [: LEND BIT (FROM HIGH NUMBERED
0DD EVEN 8IT FOR OCTAL END OF LINE)
TRACE FROM OCTAL
FOR IMP FROM IMP
PRIORITY ~LAST PACKET
L — LINE TEST
GIVE BACK/ALLOCATE
L TRANSMISSION /REPLY

INCOMPLETE
PRIORITY ORDERING

Fig. 15, Inter-IMP packet format.

packet from these framing characters thus freeing the
program from the burden of detecting packet boun-
daries. Between packets the transmission hardware
automatically generates synchronizing characters
(SYN) which the reception hardware automatically
discards.

There is no restriction on the content of a packet.
Arbitrary sequences of bits may be transmitted with-
out restriction. This transparency is achieved by a
method known as DLE-doubling. If the data in the
packet itself contains a DLE-character (the character
which introduces the packet start and packet end
sequences), that DLE-character in the data is doubled
by the transmission hardware. At the receiver, the
hardware collapses double DLEs in the data back into
one; so there is complete transparency on the inter-
IMP channels. This is a very important point. All too
many networks require transmission to be limited to
characters from a particular character set. Besides
preventing the network’s users from sending arbitrary
messages, the designers of such networks are them-
selves prevented from such things as loading programs
over the network.

In addition to showing the part of the packet
format done with hardware, fig. 15 also shows the

REQUEST - FOR~ ALLOCATE / RFNM
‘—————————— ONE-PACKET /8- PACKET

channel field, “piggy-back” acknowledgment field,
etc., mentioned in the preceding section. The por-
tions of the packet which carry the end-to-end con-
trol information (e.g., destination address, message
sequence numbers, etc.) are also shown.

Notice that much of the inter-IMP communication
algorithm is performed with hardware. Software is
particularly bad at generating powerful checksums,
scanning for packet boundaries, and so forth, espe-
cially when such chores must be done on a character-
by-character or bit-by-bit basis. Therefore, they are
done with hardware in the ARPA Network.

4.2.8. Inter-IMP buffering and allocation

Consider fig. 16. Two-way single-packet traffic
flows between A and A’ and also between B and B’,
and is constrained by network topology to use the
circuit between IMPs C and D. Suppose all the buffer
storage in IMP C can become filled with packets on
the output queue to IMP D, and all the buffer storage
in IMP D can become filled with packets on the out-
put queue to IMP C. In this case, both IMP C and IMP
D would be engaged in a direct confrontation in
which both IMPs must lose all incoming packets (and
acknowledgments) as neither machine has any buffer

The ARPA network design decisions

Fig. 16. Store-and-forward lockup.

space with which to receive inputs. We call this a
store-and-forward lockup.

It is straightforward to prevent such store-and-for-
ward lockups, and this is done in the ARPA Network
implementation. The key technique used is to guaran-
tee that sufficient buffers are reserved so that it is
always possible to input and to output one packet
over each circuit. Thus, packets (and acknowledg-
ments) can always be passed between- neighboring
machines (albeit at a trickle, perhaps). In particular,
in the IMP system, one buffer is always allocated for
output on each line, guaranteeing that output is
always possible; and double buffering is provided for
input on each line, which permits all input traffic to
be examined by the program, so that acknowledg-
ments can always be processed, which frees buffers.
Additionally, an attempt is made to provide enough
store-and-forward buffers so that all lines may oper-
ate at full capacity.

We conclude this section with two interesting
notes: 1) negative acknowledgments could be useful
in activating dormant buffers more quickly, but they
add complexity and are not used in the ARPA Net-
work; 2) more complex forms of store-and-forward
lockup than that given in the example above are pos-
sible, and while most are protected against in the
ARPA Network implementation, at least one rare
case is not protected against. See [19] for further dis-
cussion of this point. ‘

5. Source-to-destination system design

In this section we discuss the end-to-end transmis-
sion procedures and the division of responsibility
between the Hosts and nodes.

S.1. End-to-end transmission procedures

There is a considerable controversy at the present
time over whether or not a store-and-forward subnet-
work of nodes should concern itself with end-to-end

277

transmission procedures. Many workers [33] feel that
the subnetwork should be close to a pure packet car-
rier with little concern for maintaining message order,
for high levels of correct message delivery, for mes-
sage buffering in the subnetwork, etc. Other workers,
including ourselves [10], feel that the subnetwork
should take responsibility for many of the end-to-end
message processing procedures. Of course, there are
some workers who hold to positions in between [7].
However, many design issues remain constant
whether these functions are performed at Host level
or subnetwork level, and we discuss these constants in
this section.

3.1.1. Buffering and pipelining

As noted earlier in this paper, any practical net-
work must allow multiple messages simultaneously in
transit between the source and the destination, to
achieve high throughput. If, for example, one message
of 2000 bits is allowed to be outstanding between the
source and destination at a time, and the normal net-
work transit for the message including destination-to-
source acknowledgment is 100 milliseconds, then the
throughput rate that can be sustained is 20,000 bits
per second. If slow lines, slow responsiveness of the
destination Host, great distance, etc., cause the
normal network transit time to be half a second, then
the throughput rate is reduced to only 4,000 bits per
second. Similarly, we think that pipelining is essential
for most networks to improve delay characteristics;
data should travel in reasonably short packets.

To summarize, low delay requirements drive
packet size smaller, network and Host lines faster,
and network paths shorter (i.e., fewer node-to-node
hops). High throughput requirements drive the
number of packets in flight up, packet overhead
down, and the number of alternative paths up. '

5.1.2. Error control

We consider source-to-destination error control to
comprise three tasks: detecting bit errors in the
delivered messages, detecting missing messages or
pieces of messages, and detecting duplicate messages
or pieces of messages.

The former task is dome in a straightforward
manner through the use of checksums. A checksum is
appended to the message at the source and the
checksum is checked at the destination; when the
checksum does not check at the destination, the
incorrect message is discarded, requiring it to be
retransmitted from the source. Several points about

278

the manner in which checksumming should be done
are worthy of note. (a) If possible, the checksum
should check the correctness of the resequencing of
the messages which possibly got out of order in their
traversal of the network. (b) A powerful checksum is
more efficient than alternative methods such as
replication of a critical control field; it is better to
extend the checksum by the number of bits that
would have been used in the redundant field. (¢c) Un-
less encryption is desirable for some other reason it is
simpler (and just as safe) to prevent delivery of a mes-
sage to an incorrect Host through the use of a power-
ful checksum than it is to use an encryption mecha-
nism. (d) Node-to-node checksums do not fulfill the
same function as end-to-end checksums because they
check only the lines, not the nodes.

An inherent characteristic of packet-switching net-
works is that some messages or portions of messages

(i.e., packets) will fail to be delivered, and there will

be some duplicate delivery of messages or portions of
messages, as described in the section on network
properties. (Please note that throughout the
remainder of this subsection we use the word “mes-
sage” to mean either messages or portions of mes-
sages (i.e., packets).)

Missing messages can be detected at the destina-
tion through the use of one state bit for each unit of
information which can be simultaneously traversing
the network. An interesting detail is that for the
purposes of missing message detection, the state bits
used must precisely cycle through all possible states.
For example, stamping messages with a time stamp
does nothing for the process of missing message
detection because, unless a message is sent for every
“tick” of the time stamp, there is no way to distin-
guish the case of a missing message from the case
where no messages were sent for a time.

Duplicate messages can be detected with an iden-
tifying sequence number such that messages which
arrive from a prior point in the sequence are recog-
nized as duplicates. What should be noted carefully
here is that duplicate messages can arrive at the
destination up to some time, possibly quite long,
after the original copy, and the sequence number

must not complete a full cycle during this period. For.

example, if a network goal is to be able to transmit
200 minimum length messages per second from the
source to the destination and each needs a unique

sequence number, and if it is possible for messages to

arrive at the destination up to 15 seconds after initial
transmission from the source, then the sequence

JM. McQuillan, D.C. Walden

number must be able to uniquely identify at least
3000 packets. It is usually no trouble to calculate the
maximum number of messages that can be sent dur-
ing some time interval. What is more difficult is to
limit the maximum time after which duplicate mes-
sages will no longer arrive at the destination. One
method is to put a timer in each message which is
counted down as the message traverses the network;
if the timer ever counts out, the message is discarded
as too old, thus guaranteeing that no messages older
than the initial setting of the timer will be delivered

to the destination. Alternatively, in practice one can .

make a reasonably good approximate calculation of
the maximum arrival time through study of all the
worst case paths through the network and all the
worst case combinations of events which might cause
messages to loop around in the network.

In either case, there certainly must be mechanisms
to resynchronize the sequence numbers between the
source and the destination at node start-up time, to
recover from a node failure, etc. A good practice is to
resynchronize the sequence numbers occasionally
even though they are not known to be out of step. A
good frequency with which to do redundant resyn-
chronization would be every time a message has not
been sent for longer than the maximum delivery time.
In fact, this is the maximum frequency with which
the resynchronization can be done (without addi-
tional mechanisms); if duplicates are to be detected
reliably, the sequence number at the destination must
function without disruption for the maximum deliv-
ery time after the “last message” has been sent. If it is
desirable or necessary to resynchronize the sequence
numbers more often than the maximum time, an
additional ‘“‘use” number must be attached to the
sequence number to uniquely identify which “in-
stance” of this set of sequence numbers is in effect;
and, of course, the packets must also carry the use
number. This point is addressed in greater detail in
[27] and [36].

The next point to make about end-to-end error
control is that any message going from source to
destination can potentially be missing or duplicated;
i.e., not only data messages but control messages. In
fact, the very messages used in error control (e.g.,
sequence number resynchronization messages) can
themselves be missing or duplicated, and a proper
end-to-end protocol must handle these cases.

Finally, there must be some inquiry-response sys-
tem from the source to the destination to complete
the process of detecting lost messages. When the

The ARPA network design decisions

proper reply or acknowledgment has not been
received for too long, the source may inquire whether
the destination has received the message in question.
Alternatively, the source may simply retransmit the
message in question. In any case, this source inquiry
and retransmission system must also function in the
face of duplicated or lost inquiries and inquiry
response control messages. As with the inter-node
acknowledgment and retransmission system, the end-
to-end acknowledgment and retransmission system
must depend on positive acknowledgments from the
- destination to the source and on explicit inquiries or
retransmissions from the source. Negative acknowl-
edgments from the destination to the source are never
sufficient (because they might get lost) and are only
useful (albeit sometimes very useful) for increased
efficiency.

5.1.3. Storage allocation and flow control

One of the fundamental rules of communications
systems is that the source cannot simply send data to
the destination without some mechanism for guaran-
teeing storage for that data. In very primitive systems
one can guarantee a rate of disposal of data, as to a
line printer, and not exceed that rate at the data
source. In more sophisticated systems there seem to
be only two alternatives. Either one can explicitly
reserve space at the destination for a known amount
of data in advance of its transmission, or one can
declare the transmitted copy of the data expendable,
sending additional copies from the source until there
is an acknowledgment from the destination. The first
alternative is the high bandwidth solution: when
there is no space, only tiny messages travel back and
forth between the source and destination for the
purpose. of reserving destination storage. The second
alternative is the low delay solution: the text of the
message propagates as fast as possible. See [24] for a
more lengthy discussion.

In either case storage is tied up for an amount of
time equal to at least the round trip time. This is a
fundamental result—the minimum amount of buffer-
ing required by a communications system, either at
the source or at the destination, equals the product of
round trip time and the channel bandwidth. The only
way to circumvent this result is to count on the
destination behaving in some predictable fashion (an
unrealistic assumption in the general case of autono-
mous communicating entities). .

As we stated earlier, our experience and analysis
convinces us that if both low delay and high through-

279

put are desired, then there must be mechanisms to
handle each, since high throughput and low delay are
conflicting goals. This is true, in particular, for the
storage allocation mechanism. It has occasionally
been suggested [6], mainly for the sake of simplicity,
that only the low delay solution be used; that is, mes-
sages are transmitted from the source without reser-
vation of space at the destination. Those people
making the choice never to reserve space at the desti-
nation frequently assert that high bandwidth will still
be possible through use of a mechanism whereby the
source sends messages toward the destination, notes
the arrival of acknowledgments from the destination,
uses these acknowledgments to estimate the destina-
tion reception rate, and adjusts its transmissions to
match that rate. We feel that such schemes may be
quite difficult to parameterize for efficient control
and therefore may result in reduced effective band-
width and increased effective delay. If the source
never sends to the destination so fast that the destina-
tion must discard anything, then the delay is very
low, but the throughput is not as high as it might be.
Further, unless the source pushes now and then, it
will never discover that the destination is able to
increase its throughput. On the other hand, when the
source is pushing hard enough, the destination may
suddenly cut back on its throughput, causing all the
messages which will be discarded at the destination
due to the sudden cutback to have to be retrans-
mitted, increasing effective delay. If the destination
could be predicted to accept traffic at a steady rate
and vary this rate only very slowly, the type of feed-
back system cited above might work. In this case, un-
acknowledged messages should be retransmitted from
the source to the destination shortly after the
expected time for the acknowledgment to return has
elapsed, if minimum delay and maximum throughput
are to be obtained (this is in contrast to the often
suggested practice of keying retransmissions to the
discard rate). However, in practice, the time for the
acknowledgment to return is likely to be very diffi-
cult to predict due to variations (possibly rapid) in
the transit time of the communications channel and
particularly in the response time of the destination.
Furthermore, the greater the sum of transit time and
response time, the looser and less efficient the feed-
back loop will be. In fact, there appear to be oscilla-
tory conditions which can occur where performance
degrades completely. (Note that if there is much pos-
sibility of message loss, then the acknowledgment and
retransmission system should allow quite selective

280

retransmission of messages rather than, for instance,
requiring a complete window ‘of messages to be
retransmitted to effect retransmission of the specific
messages requiring it; otherwise, message retransmis-
sion will use excessive bandwidth.)

The above discussion assumes that all mechanisms
are attempting to minimize the probability of mes-
sage discard. If, in addition to possible discards at the
destination, the communications channel solves its
internal problems (e.g., potential deadlocks) with
cavalier discarding of messages, or if the destination
solves its internal problems with cavalier discarding of
messages, the detrimental effects of discarding
(reduced effective bandwidth and increased effective
dealy) are probably drastically increased. Further, the
above discussion assumed the destination was able to
minimize the probability of discard. While this may
‘be possible for a single source, we think it is unlikely
that the destination will be able to resolve, in a way
that does not entail excessive discards, the contention
for destination storage from multiple uncoordinated
sources. As reported in [19], detrimental contention
for destination storage, in the absence of a storage
reservation mechanism, happens practically continu-
ously under even modest traffic loads, and in a way
uncoordinated with the rates and strategies of the
various sources. As a result, well-behaved Hosts may
unavoidably be penalized for the actions of poorly-
behaved Hosts. :

In addition to space to hold all data, there must
also be space to record what needs to be sent and
what has been sent. If a message will result in a
response, there must be space to hold the response;
and once a response has been sent, the information
about what kind of answer was sent must be kept for
as long as retransmission of that response may be
necessary.

5.1.4. Precedence and preemption

The first point to note about precedence and pre-
emption is that the total transit time being specified
for most packet-switching networks of which we are
aware is on the order of less than a few seconds
(often only a fraction of a second). Thus, the tradi-
tional specifications (for example, low priority traffic
must be able to preempt all other traffic so that it can
traverse the network in under two minutes) no longer
make much sense. When all messages traverse the net-
work in less than a few seconds, there is generally no
need to specify that top priority traffic must preempt
other- traffic, nor to specify the relative precedences

J.M. McQuillan, D.C. Walden

between the other types of traffic. Priority can be
used, however, to admit traffic into the network
selectively. ' ,

Though priority is not strictly necessary for speed,
it may be useful for contention resolution. It appears
to us that there are three precedence and pre-emption
strategies that are reasonable to consider for a packet-
switching network, Strategy 1 is to permanently
assign the resources necessary to handle high priority
traffic; this guarantees the delivery time for the high
priority traffic but is expensive and should only be

done for limited high priority traffic. Strategy 2 is to

preempt resources as necessary for high priority traf-
fic. This can have two effects. Preempting packet
buffers results in data loss; preempting internal node
tables (e.g., the tables associated with packet
sequence numbering) results in state information loss.
State information loss means that data errors are pos-
sible which may go unreported. Strategy 3 is not to
preempt resources, and to rely on the standard
mechanisms with a priority ordering. This is simple
for the nodes, but it does not of itself guarantee
delivery within a certain time.

We think the correct strategy is probably a mixture
of the strategies above. Possibly some resources, on a
very limited basis, should be reserved for the tiny
amount of flash traffic. This guarantees minimum
delay without any queueing latency. For the rest of
the traffic, the normal delivery times are probably
acceptable. The presence of higher priority traffic can
cause gradual throttling of lower priority traffic,
without loss of state information. As the time to do
this graceful throttling is normally only a fraction of
a second, the higher priority traffic has no real reason
to demand instantaneous, information-osing pre-
emption of the lower priority traffic.

5.1.5. Message size

The question is often asked, “If one increases
packet size and decreases message size until the two
become the same, will not the difficult message reas-
sembly problem be removed?” The answer is that,
perhaps unfortunately, message size and packet size
are almost unrelated to reassembly.

We have already noted the relationship between
delay and packet size. Delay for a small priority mes-
sage is, to first order, proportional to the packet size
of the other traffic in the network. Thus, small
packets are desirable. Larger packets becomes desir-
able only when lines become so long or fast that
propagation delay is larger than transmission time.

P

The ARPA network design decisions

Message size needs to be large because the over-
head on messages is significant. It is inefficient for the
nodes to have to address too many messages and it
may be inefficient for Hosts to have too many mes-
sage interrupts. The upper limit on message size is
what can conveniently be reassembled, given node
storage and network delays.

When a channel has an appreciable delay, it is
necessary to buffer several pieces of data in the chan-
nel at one time in order to obtain full utilization of
the channel. It makes little difference whether these
pieces are called packets which must be reassembled
or messages which must be delivered in order.

We do not feel that the choice between single- and
multi-packet messages is as important as all the con-
troversy on the subject would lead one to believe.
There is agreement that buffering many data units in
transit through the network simultaneously is a
necessity. Having multi-packet messages is probably
more efficient (as the extra level of hierarchy allows
overhead functions to be applied at the correct, i.e.,
most efficient, level); having single-packet messages
probably offers the opportunity for finer grained
storage allocation and flow control mechanisms.

5.1.6. Multiplexing and addressing

Up to this point in our paper, we have not been
very specific about whether the above-mentioned
flow control, sequencing, error control, etc. mecha-
nisms were performed for each pair of communicat-
ing processes, or whether several processes communi-
cating between a given pair of source and destination
nodes share a set of these control mechanisms. The
tradeoff is between overhead and precision of con-
trol. If many conversations are multiplexed on each
instance of a source-to-destination control mecha-
nism, the control overhead is lower than if each con-
versation has its own control mechanism. On the
other hand, if several conversations are multiplexed
on the same control mechanism, all the conversations
tend to have to be treated equally (e.g., if one is
stopped, all are stopped); while if each conversation
has its own control mechanism, exact decisions about
the allocation of various resources to the various con-
versations can be made. To give some examples of the
latter, conversations over separate control mecha-
nisms can be given differing allocations, priorities,
treatments of error conditions, etc.

Another issue is the management of the space
available for control mechanisms when it is insuffi
cient to handle the number of conversations compet-

281

ing for the communications channel. Should late-
comers be left out until resources are available, or
should some way be found to multiplex the available
control mechanisms in time among the demanding
conversations? We believe the latter should be done.
The key here is not to allow users to explicitily
acquire and hold resources (e.g., control mechanism
space) needed for interprocess communication.
Instead, the system should notice which users are
actively communicating and dynamically gather the
needed resources by garbage-collecting the resources
previously being used by users which appear inactive.
This dynamic assignment of resources is obviously
not fundamentally different from the scheduling of
any limited resource in an operating system (e.g.,
memory, CPU cycles, the I/O channel to the disk)
and therefore has all the normal possibilities for
thrashing, unfairness, and so on, if care is not taken.

Once decisions in all of the above areas of multi-
plexing are made, one must choose the addressing
mechanism and formats to be used. This is usually
quite straightforward. The main point here is that
addressing comes last; but very often we see designs
begun by choosing the addressing system and format.
A similar statement can be made about the choice of
all other message formats.

5.2. Division of responsibility - between subnetwork
and Host

In the previous section we discussed a number of
issues of end-to-end procedure design which must be
considered wherever the procedures are implemented,
whether in the subnetwork or in the Hosts. In this
section we discuss the proper division of responsibil-
ity between the subnetwork and the Hosts.

5.2.1. Extent of message processing in the subnet-
work

There has been considerable discussion in the
packet-switching community about the amount and
kind of message processing that should be done in
communications subnetworks. An important part of
the ARPA Network design which has become contro-
versial is the ARPA Network system of messages and

_packets within the subnetwork, ordering of messages,

guaranteed message delivery, and so on. In particular,
the idea has been put forth that such functions
should reside at Host level rather than subnetwork
level [8,9,33].

We summarize the principle usually given for
eliminating message processing from the communica-

282

tions subnetwork: a) for complete reliability, Hosts
must do the same jobs, and therefore the nodes
should not; b) Host/Host performance may be
degraded by the nodes doing these jobs; ¢) network
interconnections may be impeded by the nodes doing
message processing; d) lockups can happen in subnet-
work message processing; e) the node would become
simpler and have more buffering capacity if it did not
have to do message processing.

The last point is true, although the extent of sim-
plification and the additional buffering is probably
not significant, but we believe the other statements
are subject to some question. We have previously
[10,27] given our detailed reasons for this belief.
Here we simply summarize our main contentions
about the place of message processing facilities in net-
works:

a. A layering of functions, a hierarchy of control,.

is essential in a complex network environment. For
efficiency, nodes must control subnetwork resources,
and Hosts must control Host resources. For reliabil-
ity, the basic subnetwork environment must be under
the effective control of the node program—Hosts
should not be able to affect the usefulness of the net-
work to other Hosts. For maintainability, the funda-
mental message processing program should be node
software, which can be changed under central control
and much more simply than all Host programs. For
debugging, a hierarchy of procedures is essential,
since otherwise the solution of any network difficulty
will require investigating all programs (including Host
programs) for possible involvement in the trouble.

b. The nature of the problem of message proces-
sing does not change if it is moved out of the network
and into the Hosts; the Hosts would then have this
very difficult job even if they do not want it.

c. Moving this task into the Hosts does not allevi-
ate any network problems such as congestion, Host
interference, or suboptimal performance but, in fact,
makes them worse since the Hosts cannot control the
use of node resources such as buffering, CPU band-
width, and line bandwidth.

d. It is basically cheaper to do message processing
in the nodes (small inexpensive computers) than in
the Hosts, and it has very few detrimental effects.

5.2.2. Peripheral processor connections

In a number of cases, an organization has desired
to connect a large Host to a network by inserting an
additional minicomputer between the main Host and
the node. The general notion has been to locate the

JM. McQuillan, D.C. Walden

Host-Host transmission procedures in this additional

machine, thus relieving the main Host from coping

with these tasks. Stated reasons for this notion
include:

—1It is difficult to change the monitor in the main
Host, and new monitor releases by the Host manu-
facturer pose continuing compatibility problems.

— Core or timing limitations exist in the main Host.

— It is desirable to use I/O arrangements that may
already exist or be available between the main Host
and the additional mini (and between the mini and
the node) to avoid design or procurement of new
1/0 gear for the main Host.

While this approach may sound good in principle,
and, in fact, may be the only possible approach in
some instances, it often leads to problems.

First, the I/O arrangments between the main Host
and any preexisting peripheral processor were not
designed for network connection and usually present
timing and bandwidth - constraints that greatly
degrade performance. More seriously, the logical pro-
tocols that may have preexisted will almost certainly
preclude the main Host from acting as a general pur-
pose Host on the network. For instance, while initial
requirements may only indicate a need for simple file
transfers to a single distant point, requirements tend
to change in the face of new facilities, and the net-
work cannot then be used to full advantage [9].

Second, the peripheral processor and its software
are often provided by an outside group, and the Host
organization may know even less about their inner
workings than they know about the main Host. The
node is centrally maintained, improved, modified,
and controlled by the Network Manager, but the
peripheral processor, while an equally foreign body, is
not so fortunate. This issue alone is crucial; functions
that do not belong in the main Hosts belong in cen-
trally monitored network equipment. Note that it is
exactly those Host groups who are unwilling to touch
the main Host’s monitor who will be unlikely to be
able to make subtle improvements in the protocols,
error message handling and timing of the peripheral
processor. From a broader economic view, common
functions - belong in the network and should be
designed once; the peripheral processor approach is a
succession of costly special cases and the total cost is
greatly escalated.

The long term solution to the dilemma is to have
the various manufacturers support hardware and soft-
ware interfaces that connect to widely used networks.
This is not likely to occur until commercial networks

The ARPA network design decisions

exist and are widely available. In the meantime,
potential Host organizations that wish to use early
networks (like the ARPA Network) should try to find
ways to put the network connection directly into the
main Host. An anthropomorphic illustration may be
helpful: the network is, among other things, a set of
standardized protocols or languages. A potential net-
work Host is in the position of a person who needs to
have dealings with people who speak a language he
does not know. If he does not want to learn the
language, he can indeed choose to use an interpreter,
but performance is poor, the process is very incon-
venient, expensive, and unpleasant, and subtle mean-
ing is always lost. The situation is quite similar when
a Host tries to work through a peripheral processor. If
a Host wishes to interact with a network, it is usually
unrealistic to try to make the Host think that the net-
work is-a card reader or some other familiar periph-
eral. As usual, you get what you pay for.

5.2.3. Other message services

One commonly suggested design requirement is for
storage in the communications subnetwork, usually
for messages .which are currently undeliverable
because a Host or a line is down. This requirement
should have no effect whatsoever on the design of the
communications part of the network; it is an ortho-
gonal requirement which should be implemented by
providing special storage Hosts at strategic locations
in the network. These can be at every node, at a few
nodes, or at a single node, depending on the relative
importance of reliability, efficient line utilization,
and cost.

Another commonly suggested design requirement
is for the communications subnetwork to provide a
message broadcast capability; i.e., a Host gives a mes-
sage to its node along with a list of Host addresses
and the nodes somehow send copies to all the Hosts
in the list. Again we believe that such a requirement
should have no effect on the design of the communi-
cations part of the network and that messages to be
broadcast should be sent to a special Host (perhaps
one of the ones in the previous paragraph) for such
broadcast.

5.3. The ARPA Network source-to-destination trans-
mission algorithmis

- In this section we describe the mechanisms by
which the IMPs in the ARPA Network manage the

283

flow of data from a source Host to a destination
Host.

5.3.1. The ARPA Network message format

In the ARPA Network, a Host presents messages to
the IMP to which the Host is directly connected.
These messages must be less than about 8100 bits
long, and the messages are transmitted between the
Host and IMP over the Host/IMP interface, which is
rigorously defined in [5]. This interface has two
parts, the hardware part and the software part.

The hardware part of the Host/IMP interface itself
has two parts, a standard portion supplied with the
IMP which is (almost) identical for all Hosts and a
special portion supplied by the Host. For simplicity
and power, the standard interface has been defined to
be full duplex. Electrically, the standard interface fol-
lows a bit-by-bit handshaking procedure. The proce-
dure is something like “I’'m ready to send a bit.” “Pm
ready to receive a bit.” “Here’s the bit.”” “I got the
bit.” “Good!” The procedure also provides for saying
“That’s the last bit in the message.”” In our opinion
this procedure is important. The ARPA Network has
to connect together all kinds of different computers
with different word lengths, different speeds, differ-
ent loading, and so forth; and it is desirable to place
only minimal constraints on the Hosts’ behavior. The
above procedure permits this. The asynchronous, bit-
by-bit serial interface permits both the Host and the
IMP to be able to start and stop transmission when-
ever necessary. Incidentally, the IMP’s side of the
above procedure is implemented entirely with hard-
ware. (Note: an optional synchronous Host/IMP inter-
face is also available as described in Appendix F of
[5]. It is considerably more complicated, less flexible,
and slower than the normal asynchronous, serial
interface; and its use is recommended only when a
communications interface suitable for operation over
long distances is required. HDLC would have been a
better choice had it been available at the time.)

The software interface between an IMP and a Host
is also simple, using a minimum number of control
messages. The Host specifies to its IMP the destina-
tion of a message and a few other things in the first
32 bits of the message, called the leader. Messages
arriving at the Hosts have the same information in the
first 32 bits of the messages, except that the destina-
tion is replaced by the source.

Neither the hardware nor the software interface
between the IMP and the Host places any constraint
on the content of messages other than that they must
have legal leaders and must have less than the maxi-

284

mum length. In other words, messages may be sent
through the network containing arbitrary sequences
of bits.

An IMP breaks messages arriving from its Hosts
into packets 1000 or fewer bits long. As the IMP seg-
ments a message into packets, it appends to the front
of each packet some control information called the
header. The header contains the destination, the
packet number within the message, a message
sequence number which is used for reconstructing the
message stream as the messages arrive at the destina-
tion, and other control information (e.g., priority
information) copied from the message into each con-
stituent packet. This message segmentation and mes-
sage reconstruction is completely invisible to- the
Hosts in the ARPA Network implementation of mes-
sages and packets.

5.3.2. The ARPA Network source-to-destination
transmission procedure

We have already noted that the ARPA Network
implementation uses the technique of breaking mes-
sages into packets to minimize the delay seen for long
transmissions over many hops. The ARPA Network
implementation also allows several messages to be in
transit simultaneously between a given pair of Hosts.
However, the several messages and the packets within
the messages may arrive at the destination IMP out of
order, and in the event of a broken IMP or line, there
may be duplicates. The task of the ARPA Network
source-to-destination transmission procedure is to
reorder packets and messages at their destination, to
cull duplicates, and after all the packets of a message
have arrived, pass the message on to the destination
Host and return an end-to-end acknowledgment
called a Ready For Next Message (or RFNM) to the
SOUrCe.

Up to eight messages are allowed to be in transit
from a given source Host to a given destination Host
at one time. There is a Host/Host specific sequence
number (which we call the message number) assigned
out of a message number space of 256 to each mes-
sage by the source IMP. The destination IMP has a
window of eight acceptable message numbers out of
this message number space of 256. Messages with out-
of-range message numbers, as well as duplicate mes-
sages and duplicate packets, are discarded at the
destination IMP. Ready For Next Message messages
are returned for each message correctly received. The
Hosts know nothing about these message numbers:
they are used internally by the communications sub-

JM. McQuillan, D.C. Walden

network of IMPs to order message delivery into the
destination Host.

It is desirable to have a priority path as well as
a normal path between pairs of Hosts. This is pro-
vided in the ARPA Network through use of a second
message number between each pair of Hosts. Thus
there are two independent message number streams
between a pair of Hosts, and messages in one stream
(e.g., the priority stream) can be used faster than mes-
sage numbers in the other (e.g., the normal stream)
without interference between the two streams,

In addition to the window of acceptable message
numbers that the source and destination IMPs main-
tain, there is a set of bits corresponding to outstand-
ing messages. The source IMP keeps track of whether
a response has come in (typically in the form of a
Ready For Next Message) for each message sent. The
destination IMP keeps track of whether the message
is complete (that is, whether all the packets have
arrived). The source IMP also times out the message
number, and if a response has not been received for a
message for too long a period (e.g., thirty seconds),
the source IMP sends a control message with the
timed-out message number questioning the possibility
of an incomplete transmission. The destination IMP
must always return a Ready for Next Message for
such a control message stating whether it saw the
original message or not, and the source IMP will send
the message number in question every few seconds
until it receives a response or one of the other of the
IMPs decides that there is a hopeless deadlock and
more massive corrective action is required (this is dis-
cussed below). This technique allows the source and
destination IMPs to be synchronized in the event of a
lost message or Ready For Next Message. It should be
noted that this kind of failure is very infrequent, and
happens only when an intermediate IMP fails and in
doing so destroys a message.

Of course, as mentioned earlier, the very control
messages used for duplicate detection, lost message
detection, and order control, must themselves be con-
trolled for duplication, loss, and order. The ARPA
Network algorithms do this.

If the IMPs placed no restriction on the number of
messages that could simultaneously be in transit to a
given destination IMP other than the Host/Host mes-
sage number window of eight mentioned above, then
reassembly storage at the destination IMP could be
completely used up by partially reassembled messages
from several Hosts, and the IMPs neighboring the
destination IMP could fill with store-and-forward

WL S e Tagree T AT A

The ARPA network design decisions

packets for the destination IMP. Once this kind of
congestion developed, a lockup which has been called
reassembly lockup can easily occur when the missing
packets for the messages being reassembled are held
two or more hops away from the destination. This
phenomenon has been discussed extensively in [19].

The IMPs control such congestion by a method
based on strict allocation of destination IMP storage.
When an IMP has a multi-packet message to send, it
first sends off a “request for allocation™ of reassem-
bly space to the destination' IMP. Some time later it
will receive an “allocate” message, which means that
the destination IMP has reserved space in which to
reassemble the multi-packet message, and then the
source IMP can send the multi-packet message. This
procedure ensures that the destination is never
swamped and the reassembly lockup will not occur.

The request/allocate sequence does introduce a
certain amount of overhead, however, for multi-
packet messages. Since it is desirable to provide as
much bandwidth as possible for multi-packet mes-
sages, a mechanism is provided such that there is no
necessity for the “request for allocation™ in the case
of later messages in a steady stream of traffic. When
the destination IMP has given a multi-packet mes-
sage to one of its Hosts, it returns a Ready For Next
Message to the source and at the same time allocates
reassembly storage for an anticipated next message.
The source IMP receives, in effect, a new allocate
with the Ready For Next Message and if the source
Host sends another message to the destination within
125 milliseconds, the message can be transmitted with-
out waiting for the “request for allocation/allocate”
sequence. If the source Host waits too long, the
source IMP will return the allocation to the destina-
tion IMP with a “give back™ message. After this, the
next time the Host tries to send, the IMP will again
transmit a “request for allocation™ and wait for an
“allocate” before proceeding.

For single-packet messages it is possible to do
away with some of the delay inherent in the “request
for allocation’ mechanism used for multi-packet mes-
sages. The single-packet messages can be sent along
with their “request for allocation”, if a copy of the
message is saved at the source IMP. If the destination
IMP can take the message, it does so immediately and
returns a Ready For Next Message to the source. If
there is not enough storage at the destination, the
destination IMP discards the messages, and it sends
back an “allocate” when storage becomes available.
When the source IMP receives this allocate, it retrans-

285

mits the message (this time without the request indica-
tion). This modified mechanism used for single
packet messages is logically identical to that used for
multi-packet messages, but it is optimized to take
advantage of the highly probable case that the desti-
nation will be able to find storage for a single packet
immediately.

Once again, and as noted before, all the allocation
control messages must themselves be allocated if
deadlocks are to be avoided, and the ARPA imple-
mentation does this.

5.3.3. The ARPA Network data structures for source-
to-destination transmission

In order to successfully and efficiently handle the
large number of conversations with various Hosts that
can be simultaneously in progress, all of the data
structures in the IMP associated with message proces-
sing take the form of blocks dynamically gathered
from a pool of blocks, each containing a few words of
storage. The alternative of keeping linear tables
indexed by IMP, Host, or anything else is prohibiti-
vely expensive as the network becomes large.

One example of such a dynamic data structure is
the transaction block which the source IMP creates
when a message is initiated. This block keeps track of
whether the message has a copy kept at the source,
whether it needs an allocate, and so on. A key func-
tion of the transaction block is to hold a copy of the
message header to identify the message. When a
Ready For Next Message returns from the destina-
tion, a Ready For Next Message for the source Host
can be formatted in place in the transaction block,
solving a difficult storage allocation problem, The
transaction blocks can be on a free list, on an active
list (i.e., message outstanding), or on a Host queue
(i.e., Ready For Next Message to be sent). In addi-

. tion, they can hold the information as to whether an

“allocate” was sent back with the Ready For Next

‘Message.

~ Another example of a dynamic block is the reas-
sembly block which is kept at the destination IMP for
the purpose of ordering the packets of a multi-packet
message. It also contains the message header and a list
of which packets have arrived. If none has arrived
yet, it constitutes a record of an allocation that has
been sent to a particular Host or IMP. It can also be
on several queues: a free list, an active list, or (theo-
retically) a Host queue (this last is an implementation
option which was not chosen in the case of the IMP
system). Notice that in each of these cases, that of

286

the transaction block and the reassembly block, the
data structure represents an important resource.
There can only be a finite number of blocks; their use
must be allocated among several competing source
and destination Hosts; critical questions of efficiency
and fairness arise in the process of block allocation.

In keeping with this general philosophy of table
structure, message blocks are used to keep track of
the Host/Host message numbers. This concept allows
the set of Hosts on an IMP to send messages to an
arbitrary number of other Hosts over a wide range of
addresses, with a limited number of message blocks.
Several issues arise with consideration to dynamic
message blocks:

There must be control messages between the
source and destination IMPs of the form “get a
block™ and “got a block™, in order to establish a
“conversation” between a given pair of Hosts on the
two IMPs.

There must be an error control mechanism to
detect duplicate or missing “get a block™ and “got
a block” messages.

Once a conversation is established, messages can
flow. Then there must be a technique to distin-
guish messages in this conversation from old dupli-
cates from a previous conversation between this
pair of Hosts. The messages and packets must
carry some identifying number for this purpose.

Conversations should be able to be broken by
either end if an IMP finds its storage for message
blocks filling up. The messages to do this, “do a
reset” and “did a reset” as we call them, must also
be error-controlled.

Conversations should begin without undue
startup delay. '

The dynamic tables should be simplex; that is,
one-directional message numbers should be used to
avoid deadlocks of the form A tries to talk to B, B
tries to talk to C, C tries to talk to A, and none of
A, B, or C has any more free blocks to use to
begin a new conversation.

The tables should be fast to access at both the
source and destination IMPs.

The method used the the ARPA Network for im-
plementing this system is based on a small pool of
blocks, each of which carries a “use number”, four
bits wide, permanently associated with the block. All
packets exchanged between IMPs carry the block
number to be used in processing the packet and the
use number. As explained in more detail below, these
numbers provide thé key information necessary for

J.M. McQuillan, D.C. Walden

error control in a dynamic block environment.

The system works as follows: When a Host at an
IMP gives its IMP a message, the IMP first looks to see
if a block exists for that source Host to that destina-
tion IMP and Host. Instead of searching through all
blocks, a “bucket sort” (a simple hash) is performed,
to cut the average search length by some number (by
16 in actual fact) using a few bits of the key (source
Host, destination IMP, destination Host) to begin the
sort. It then checks successive blocks in the bucket
led to by the sort (all the blocks in a single bucket are
actually chained together for speed of access). If no
block is found already existing for this key, a new
block must be acquired at both the source and desti-
nation IMPs for this Host/Host conversation. The
source IMP gets a block from the list of free blocks
(the case of no free blocks is discussed later). It puts
the new block at the top of the bucket (head of the
chain) that it just searched. The program then copies
in all the key information, adds one to the use num-
ber of the block, initializes the transmit message
number entry, turns on a bit to indicate that the
block is not yet in use, and calculates the index of the
block it found.

The program then constructs a “get a block” mes-
sage which includes the index number calculated just
above and the use number from the block and sends
the “get a block’ message to the destination IMP.
The source IMP then waits for an answering “got a
block”. The “get a block” must be retransmitted
every few seconds if no answer returns. When a “got a
block™ is returned, the initialization bit is cleared,
and the foreign block and use number which arrived
in the “got a block™ are copied into the source block.
Now the message can be sent using the message
number window, allocation, and ordering techniques
described above.

At the destination IMP, when a “get a block™ is
received, the program tries to get a free block. If the
free list is empty, nothing more is done (in effect, the
“get a block” request is ignored). If a free block is
available, all the key data carried in the “get a block”
is copied into the block and a “got a block™ message
is constructed including the key data and sent to the
source.

When the source IMP sends a packet to the desti-
nation, it carries the foreign block number and use
number which are kept in the source block. The
destination IMP uses this number to calculate the
address of its message block and verifies the key
information including the use number. In all other

The ARPA network design decisions

ways, the logic discussed above for accepting packets
within the message number window is followed.
When a Ready For Next Message is generated at the
destination IMP, it carries back the block number and
use number kept in the destination block. This allows
the source IMP to find its block and detect duplicate
Ready For Next Messages in a simple manner.

We have explained how blocks are acquired. It is
also necessary to discard blocks. There are two timers
in the transmit and receive block. One counts two
seconds of inactivity, the other two minutes of inac-
tivity. A block may be discarded after two seconds of
idle time, and a block must be discarded after two
minutes of idle time. The two-second timer serves the
function of quickly time-multiplexing the use of the
dynamic block by many different conversations. The
two-minute timer is used merely in a background
manner to refresh the pool of free blocks by garbage
collecting blocks associated with conversations long
inactive, thus avoiding more often expensive searches
for a free block at the instant a new free block is
required. The two-minute timer could be made longer
if desired, to allow Hosts to pause longer in a conver-
sation without incurring some setup delay; the two-
second timer value is more critical. If, as we assume,
duplicate packets may arrive at an IMP up to thirty
seconds after initial arrival, then a mechanism is
needed to allow blocks to be created and deleted
more often than every thirty seconds that protects
against the same pair of Hosts using the same block
twice and not catching a duplicate. The 4-bit use
number allows sixteen cycles of acquisition and
discard of the same block in any thirty second inter-
val. Therefore, at least two seconds must elapse after
acquisition of a block before it can be discarded. The
rule that the message number must be idle for two
seconds before a block can be discarded is actually
stronger, but it seems a good rule to prevent thrash-
ing and inefficiencies. The two minute timer serves to
keep everything in synchronization in steady state
(actually the timer runs for two minutes on the trans-
mit side, and for slightly longer on the receive side, to
prevent races).

The best policy to follow for choosing when to
delete blocks seems to be for an IMP to attempt to
find deletable blocks (either transmit or receive)
when its free block list goes below some clip, say 10%
of the total pool. When this happens, if the program
can locate a transmit block that can be deleted, it
sends out a “reset” message to the destination, which
causes the destination to discard its block and to send

287

a “reset reply” back to the source which causes the
source to discard its block. If the program finds a
receive block to delete, it sends a “reset request”
message -to the source which then follows the above
protocol for performing a reset. On all these messages,
the block number and use number provide a duplicate
detection facility, since a given block with a partic-
ular use number can only be reset once.

At this point, it is worth noting the duphcate

~ detection mechanism applied to the “get a block” and

“got a block” messages. The “get a block™ carries no
identifying information other than the addresses of
the source and destination and the source block
number and use number. If a duplicate arrives during
the conversation it initiated, it can be detected; like-
wise, if it arrives during any other later conversation
between those two Hosts it can be detected. The only

. problem arises if the “get a block™ duplicate arrives at

the destination when no block exists between the two
Hosts. Then the destination IMP must get a block and
return-a “got a block™ to the source. If the source
receives a “got a block™ when it is not expecting one,
it must send out a “reset” to clear the destination.
This fixes the problem, and since the program ignores
“reset” and “reset reply” messages which do not
match the block and use number then active, it also
takes care of the case of duplicate “got a block” mes-
sages and unwanted “reset” and “reset reply” mes-
sages generated to deal with these circumstances.

This concludes our discussion of dynamic mes-
sage blocks. They do not present a large penalty in
storage, delay or packet size; they are reliable because
they are maintained dynamically and all communica-
tions are error controlled; they allow the available
blocks to be quickly multiplexed in time among a
number of conversations (albeit at reduced perfor-
mance for each conversation) rather than shutting
some conversations out as the available message trans-
mission resources become fully used; and they allow
separate message numbers between each Host/Host
pair even when the total number of Hosts in the net-
work is beyond a number where fixed linear tables
indexed by Host would be possible. In fact, expand-
ing on the final point, the dynamic message block
mechanism permits multiple message number streams
between a given Host/Host pair. The ARPA imple-
mentation currently permits two, one priority stream
and one normal stream; but additional streams are
easy to imagine (e.g., special “permanent” streams
which cannot be preempted after two seconds,
streams which follow a different ordering or retrans-

288

mission criterion or even the lack of one, streams
which have varying message number windows depend-
ing perhaps on stated Host needs). Altogether, the
dynamic message block mechanism appears to permit
very flexible and reliable operation. For further infor-
mation on these techniques, see [27].

Epilogue

Since the ARPA Network was turned over to the
Defense Communications Agency in mid-1975, the
network has been considered primarily an operational
entity with the emphasis on stability and lack of
change. Nonetheless, as network usage has continued
to increase over the past two years, some flaws in the
network’s design have become apparent and the net-
work design has continued to evolve, albeit at a slow
rate. Difficulties and developments have centered in
the areas of routing in the face of congestion, accom-
modation of non-homogeneous network elements,
and expansion of the network to be able to address
larger numbers of Hosts and IMPs.

It appears that the ARPA Network will continue
in its current mode of operation for at least two or
three more years before its potential replacement by
the second generation of packet-switching network
which. the U.S. government is building. During this
period, no doubt there will be additional incremental
changes. We expect that the ARPA Network will
remain one of the more interesting developments in
computer communications technology for several
years to come.

Acknowledgments

Groups and individuals too numerous to mention
by name have taken part in and influenced the design
of the ARPA Network. We recognize their contribu-
tions; our own efforts are modest compared with the
sum of the creative energy which has gone into this
project. We express our thanks to R. Brooks and S.
Schindler for their help with the preparation of the
manuscript, and to the referees for their helpful com-
ments.

References

[1] Auerbach Publishers Inc., Public Packet Switching Net-
~ works, Data Processing Manual No. 3-08-04 (1974).

J.M. McQuillan, D.C. Walden

[2] Baran, On Distributed Communications: I. Introduc-
tion to Distributed Communications Networks, Rand
Corp. Memo RM-3420-PR (August 1964) 37.

[3]1 D.L.A. Barber (ed.), A Specification for a European In-
formatics Network, Co-Operation Europeenne dans le
Domaine de la Recherche Scientifique et Technique
(January 4, 1974).)

[4] K.A. Bartlett, R.A. Scantlebury and P.T. Wilkinson, A
Note on Reliable Full Duplex Transmission Over Half
Duplex Lines, Commun. ACM, 12 (1969) 260-261.

[5] Specification for the Interconnection of a Host and an
IMP, Bolt Beranek and Newman Report 1822, Decem-
ber 1974 revision. :

[6] D. Belsnes, Flow Control in Packet Switching Net-
works, INWG Note No. 63 (October 1974).

[7] G.J. Brant and G.J. Chretien, Methods to Control and
Operate a Message-Switching Network, Computer-
Communications Network and Teletraffic, Polytechnic
Press of the Polytechnical Institute of Brooklyn, Brook-
lyn, N.Y. (1972).

[8] V. Cerf and R. Kahn, A Protocol for Packet Network
Inter-Communications, IEEE Trans. Communications
COM-22 (1974) 637-648.)

[9] V. Cerf, An Assessment of ARPANET Protocols, RFC
635, NIC 30489 (April 1974), a limited number of
copies available for the cost of reproduction and hand-
ling from INWG, cfo Prof. V. Cerf, Digital Systems
Laboratory, Stanford, CA. 94305.

[10] R. Crowther, F.E. Heart, A.A. McKenzie, J.M. McQuil-
lan and D.C. Walden, Network Design Issues, BBN
Report No. 2918 (November 1974) to be available from
National Technical Information Service.

[11] D.W. Davies, K.A. Bartlett, R.A. Scantlebury and P.T.
Wilkinson, A Digital Communication Network for Com-
puters Giving Rapid Response at Remote Terminals,
Proc. ACM Symp. on Operating Systems Principles
(October 1967).

[12] D.W. Davies and D.L.A. Barber, Communication Net-
works for Computers (London, John Wiley and Sons,
1973).

[13] R.F. Despres, A Packet Switching Network with Grace-
ful Saturated Operation, Proc. First Internat. Conf.
Computer Communication (October 1972) 345-351.

[14] R.W. Floyd, Algorithm 97, Shortest Path, CACM 5(6)

“(June 1962) 345.

{151 H. Frank, R.E. Kahn and L. Kleinrock, Computer
Communications Network Design—Experience with
Theory and Practice, AFIPS Conf. Proc., Vol. 40 (June
1972) 255-270; also in Networks 2 (1972) 135-166;
also in Advances in Computer Communication, W.W.
Chu (ed.), Artech House Inc. (1974) 254—269.

[16] M. Gerla, Deterministic and Adaptive Routing Policies
in Packet-Switched Computer Networks, Proc. Third
ACM Data Communications Symp. (November 1973)
23-28.

[17] F.E. Heart, R.E. Kahn, S.M. Ornstein, W.R. Crowther
and D.C. Walden, The Interface Message Processor for
the ARPA Computer Network, AFIPS Conf. Proceed-
ings, Vol. 36 (June 1970) 551-567; also in Advances in
Computer Communications, W.W. Chu (ed.), Artech
House Inc. (1974) 300-316.

The ARPA network design decisions

[18] F.E. Heart, S.M. Ornstein, W.R. Crowther and W.B.
Barker, A New Minicomputer/Multiprocessor for the
ARPA Network, AFIPS Conf. Proc., Vol. 42 (June
1973) 529-537; also in Selected Papers: Internat. Ad-
vanced Study Institute, Computer Communication Net-
works, R.L. Grimsdale and F.F. Kuo (eds.), University
of Sussex, Brighton, England (September 1973); also in
Advances in Computer Communications, W.W. Chu
(ed.) Artech House Inc. (1974) 329--337.

[19] R.E. Kahn and W.R. Crowther, Flow Control in a
Resource-Sharing Computer Network, Proc. Second
ACM/IEEE Symp. on Problems in the Optimization of
Data Communications Systems, Palo Alto, California
(October 1971) 108-116; also in IEEE Trans. Com-
munications COM-20 (1972) 539-546.

[20] L. Kleinrock, Communications Nets: Stochastic Message
Flow and Delay, Dover Publications, New York (1964).

[21] L. Kleinrock, Analytic and Simulation Methods in Com-
puter Network Design, AFIPS Conf. Proc. Vol. 36 (June
1970) 569-579.

{22] L. Kleinrock and G.L. Fultz, Adaptive Routing Techni-
ques for Store-and-Forward Computer Communication
Networks, International Computer State of the Art
Report No. 6; Computer Networks, Infotech Informa-
tion Ltd. Maidenhead, Berkshire, England (1971) 541 —
§62; also in Proc. Internat. Conf. on Communications,
Montreal, Quebec, Canada (June 1971) 39.1—-39.8.

23] L. Kleinrock and W. Naylor, On Measured Behavior of
the ARPA Network, AFIPS Conf, Proc., Vol. 43 (May
1974) 767-780.

[24] J.]M. McQuillan, W.R. Crowther, B.P. Cosell, D.C. Wal-
den and F.E. Heart, Improvements in the Design and
Performance of the ARPA Network, AFIPS Conf. Proc.
Vol. 41 (December 1972) 741—-754.

[25] 3. M. McQuillan, Throughput in the ARPA Network —

Analysis and Measurement, BBN Report 2491 (January -

1973).

[26] J.M. McQuillan, Adaptive Routing Algorithms for Dis-
tributed Computer Networks, BBN Report No. 2831
(May 1974) available from the National Technical
Information Service, AD781467.

289

[27] I M. McQuillan, The Evolution of Message Processing
Techniques in the ARPA Network, in: International
Computer State of the Art Report No. 24: Network
Systems and Software, Infotech, Maidenhead, England,
541-578.

[28] R.M. Metcalfe, Packet Communication, Massachusetts
Institute of Technology Project MAC Report MAC
TR-114 (December 1973).

[29] NAC First Semiannual Technical Report for the Project,
Analysis and Optimization of Store-and-Forward Com-
puter Networks (June 1970).

[30] NAC Second Semiannual Technical Report for the Pro-
ject, Analysis and Optimization of Store-and-Forward
Computer Networks (January 1971).

[31] H. Opderbeck and W. Naylor, ARPA Network Measure-
ment Center, personal communication (November
1974).

[32] S.M. Ornstein, W.R, Crowther, M.F. Kraley, R.D. Bress-
ler, A. Michel and F.E. Heart, Pluribus—A Reliable
Multiprocessor, AFIPS Conf. Proc., Vol. 44 (May 1975)
551-559.

[33] L. Pouzin, Presentation and Major Design Aspects of the
Cyclades Computer Network, Proc. Third ACM Data
Communications Symp. (November 1973) 80—88.

{34] L. Pouzin, Basic Flements of a Network Data Link Con-
trol Procedure (NDLC), INWG 54, NIC 30375 (January
1974), a limited number of copies available for the cost
of reproduction and handling from INWG, c¢/o Prof. V.
Cerf, Digital Systems Laboratory, Stanford, CA. 94305.

[35] R.D. Rosner, A Digital Data Network Concept for the
Defense Communications System, Proc. National Tele-
communications Conf., Atlanta (November 1973)
22C1-6.

[36] R.S. Tomlinson, Selecting Sequence Numbers, INWG—
Protocol Note 2 (August 1974), a limited number of
copies available for the cost of reproduction and hand-
ling from INWG, c/o Prof. V. Cerf, Digital Systems
Laboratory, Stanford, CA. 94305.

